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ment an embedded system for identifying people
based on movements in table football. The em-
bedded system should be able to train a neural
network, and use it to make predictions based
on movement data collected during a game of
table football by sensors attached to the han-
dles of the football table.
To collect data, we developed an embedded sys-
tem consisting of batteries, a microcontroller,
and a sensor, which are all attached to a foot-
ball table. The sensor consists of an accelerom-
eter and a gyroscope. From the raw sensor data
an algorithm was devised for extracting move-
ments and splitting each movement into fea-
tures. To implement the model on an embed-
ded system we created an architecture consist-
ing of two data collection nodes, a relay node,
and a DataHub front-end application. The re-
sult of this project is an embedded system that
is able to collect movements from handles on a
football table, use these movements to train an
artificial neural network, and accurately iden-
tify who is playing. Training and labelling for
players are configured on the DataHub website,
where live classification results are displayed af-
ter the model is trained.
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Preface

This report has been written by the software group sw512e17 during the fifth semester at Aalborg
University. The project has spanned from September to December 2017. The theme of the project
is recognition and analysis of human movement using machine intelligence. The project has been
supervised by Giorgio Bacci.

Reading Guide

The illustrations and figures used throughout this report have been made by group sw512e17 unless
otherwise stated. Excluded sections of code have been replaced with ellipsis ([. . . ]). Citations will
be made using the number notation where the number refers to a source in the bibliography.

Chapter 5 gives a brief introduction to the basics of machine learning and neural networks in
particular, this chapter can be skipped, with the exception of section 5.2.4, if the reader already
understands the basics of machine learning and neural networks. The entire code base for the
final solution including code for analysing different machine learning models can be found at the
project group’s public repository by navigating to https://github.com/AAUSoftwareStudentGroup/
P5-Embedded. The source code and additional files have been handed in together with this report
and will be referenced within the report as the electronic appendix.

Abbreviations

Listed below are abbreviations used in the project along with their meaning.

Abbreviation Meaning

AI Artificial Intelligence

ANN Artificial Neural Network

ML Machine Learning

NN Neural Network

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SL Supervised Learning

SVM Support Vector Machine

USL UnSupervised Learning

ERD Entity Relation Diagram

API Application Programming Interface

LSTMs Long Short-Term Memory

Player Person playing the game

Table 1: Abbreviations used throughout the report
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Chapter 1

Introduction

Machine learning (ML) has been applied to many different areas such as image analysis, recom-
mender systems, and activity recognition. As such, ML has also been applied to identify people in
areas such as mobile device authentication, where data gathered by biometric scanners has been
used by various ML models. Examples of such applications include face and eye detection [1].

During our everyday lives, we carry out different tasks which require some sort of movement e.g.
walking from point a to point b, handwriting, typing and so forth. As such the project group is
interested in examining whether it is possible to use ML for recognising individuals based on their
movement, as it could be applied to many areas within the task of identification.

In order to apply ML for identifying people based on movements, we will need to gather a lot of
data about such movements. To keep it simple and in a controlled environment, where we know
we can gather a lot of data, we have chosen to limit the problem to identifying people based on
their movements in table football. The advantage of this includes the possibility of performing data
gathering at the university, as there are available football tables, as well as making data gathering
more fun, as it requires us to play table football.

The study curriculum states that the project solution, or at least part of it, has to be implemented
on an embedded system. The task at hand is to combine the identification of people based on
movements using ML and creating an embedded system.
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Chapter 2

Problem Analysis

The purpose of this chapter is to come up with clear definitions of the different aspects of this project.
First, movement is defined, also showing the correlation between different kinds of measurements,
helping us make a choice of which kind of data we want to gather. This is followed by a description
of table football, allowing us to get a better understanding of the problem domain.

2.1 Definition of Movement

According to the Collins Dictionary, movement “. . . involves changing position or going from one
place to another.” [2]. As no human is able to move instantaneously, we define movement as a
change of position over a given time period. Thereby, we have time and position as information. A
movement of an object can be described as a function p : R→ R3 expressed as

p(t) =

x(t)
y(t)
z(t)


Where x, y, and z are functions describing the x, y, and z coordinate of the object at time t. To
describe the object’s change in position we can determine the velocity of the object, which based
on p, can be expressed as a function v : R→ R3 as follows

v(t) =

vx(t)
vy(t)
vz(t)

 = p′(t) =

x′(t)y′(t)
z′(t)


In order to obtain velocity from a standstill, an object must accelerate. We can describe the change
of an object’s velocity as the acceleration of the object given by a function a : R→ R3 as follows

a(t) =

ax(t)
ay(t)
az(t)

 = v′(t) =

v′x(t)
v′y(t)
v′z(t)


The correlation between the three properties of movement makes it possible to describe both the
velocity and acceleration based on the position as:

v(t) = p′(t) (2.1)

2



Chapter 2. Problem Analysis 2.2. Table Football

a(t) = v′(t) = p′′(t) (2.2)

Without additional information we cannot necessarily derive the exact p(t) based on either v(t) or
a(t) because this depends on whether there is a unique solution for p to the differential equations
2.1 and 2.2.

An example is, if we measure the velocity, we cannot obtain the information about the starting
position, as it is only a measure of the changes in the position over a given time period. The
same goes for acceleration. Given acceleration, we cannot obtain knowledge about the starting
velocity. Therefore, it would be preferable to measure position over time, and given this, calculate
(if necessary) velocity and acceleration. On the other hand, if we measure e.g. acceleration, we
need to assume that additional information such as starting position and velocity is not required
to identify who performed the movement.

Another issue is that movements with constant speed cannot be measured based on only accelera-
tion. However, performing a movement with constant speed in a domain such as a table football is
unlikely.

2.2 Table Football

Table football is defined as “a game based on soccer [football], played on a table with sets of miniature
human figures mounted on rods [handles] allowing them to be tilted or spun to strike the ball . . . ”
[3].

A typical game of table football is played by 2-4 players, and is finished once one of the teams
reaches the score limit. For competitive table football, specific rules have been defined, as can
be seen in [4]. For hobby play, the rules vary, but often include rules such as no spinning of the
handle is allowed, meaning turning the handle more than 360 degrees in quick succession. Limiting
a certain kind of movement such as spinning allows us to refrain from having to recognise this kind
of movement.

2.2.1 Movements in Table Football

As previously mentioned; when playing table football, the players are manipulating the game
through movements of table football players attached to the handles. There are two kinds of
movement through the handles in table football: translation and rotation. This is illustrated in
figure 2.1. Combining these movements makes each player able to hit the ball once it is in reach of a
table football player or position a table football player to block an incoming shot from an opponent.

3



Chapter 2. Problem Analysis 2.2. Table Football

Figure 2.1
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Chapter 3

Problem Statement

Based on the definitions of human movement and table football in combination with the specified
requirements for the semester, as stated in the study curriculum [5], a clear definition of the problem
this project aims to solve, can now be presented.

Problem statement How can an embedded system be implemented to identify individuals based
on the movement of handles in a table football game using machine learning?

To help answer this problem, the following four research questions are established:

• How can data about movements of handles in a table football game be collected?

• How can data be processed to use it for training machine learning models to identify people
playing table football?

• Which machine learning models can be used to identify players?

• How can such a machine learning model be implemented on an embedded system?

3.1 Milestones

Based on the problem statement, we define the following requirements as three milestones for the
embedded system to be developed in this project. The three milestones are concerned with data
collection, embedded classification, and embedded training respectively. The list below is a more
detailed description of each of the three milestones.

1. The embedded system must be able to collect data about a player’s movements of handles in
table football

2. The embedded system must be able to classify which of two players is playing based on a
pre-trained model

3. The embedded system must be able to train a model and use this model to classify players

The report is composed of three parts, each concerning their respective milestone.

5



Part I

Milestone 1
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Chapter 4

Data Collection

As described in section 3.1 the first milestone is to measure a player’s movements of handles. To
be able to do this, we need a sensor to measure the translation and rotation of a handle which is
described in section 4.1. The rest of the chapter considers the choice of embedded platform, by
comparing different alternatives. Hereafter, we will choose a design for the hardware by considering
e.g. size and position of the mounting system used to secure the sensors to the table. The software
needed will then be described, followed by a consideration of how fast to sample data. The last
section of the chapter will test milestone 1.

4.1 Choice of Sensor

In this section, we present different sensors to measure translation or rotation and select which of
these we will use to collect data.

4.1.1 Translation

First, sensors for translation are considered.

Accelerometer

Some accelerometers, such as the MPU-6050, measures acceleration in three orthogonal directions
x, y, and z [6, p. 25]. Based on these accelerations it is possible to construct a three-dimensional
acceleration vector that describes the acceleration direction relative to the orientation of the ac-
celerometer, as well as the total acceleration, as the length of the vector.

To measure the acceleration when translating a handle, a possible solution will be to place an
accelerometer directly on the handle as shown in figure 4.1.

7



Chapter 4. Data Collection 4.1. Choice of Sensor

Figure 4.1: Illustrates position of accelerometer directly on the handle.

The cost of a MPU-6050 accelerometer is approximately 1.18 USD [7] which also includes a three-
axis gyroscope [6] and is therefore capable of measuring the rotation of the handle as well.

Sliding Potentiometer

The sliding potentiometer is an electronic component which has a variable resistance controlled
through the position of the slider. This component can be used to measure the position of the
handle during translation as shown in figure 4.2.

Figure 4.2: Shows how to measure translation using a sliding potentiometer attached to the handle

There are different sizes of sliding potentiometers with different prices. A price example is 3.87
USD for five pieces of 75mm sliding potentiometers [8]. It is difficult to find sliding potentiometers
with a travel distance above 100mm. This is a problem because the handles for the table football
used in this project can move between a maximum of 125mm to 350mm, depending on which table
we are using.

Linear Encoder

A linear encoder is a digital device used to measure linear movements [9]. There are different types
of linear encoders using either absolute or incremental positioning feedback and optical or magnetic
encoding [9]. Figure 4.3 shows a way to integrate a linear encoder using incremental feedback and
optical encoding.

8



Chapter 4. Data Collection 4.1. Choice of Sensor

Figure 4.3: Shows how to measure translation using linear encoding of the handle

The linear encoder in figure 4.3 detects movements using reflective optical sensors made of an
infrared (IR) diode emitting IR light detected by an IR phototransistor. The phototransistor is
activated when the light is reflected by the white stripes on the handle. The phototransistor is
deactivated when the light is absorbed by the black stripes on the handle. With this technique, we
can measure a change in the position of the handle. To detect which way the handle is moving, two
sensors are placed with an offset corresponding to the width of half a stripe, so when it starts moving,
one of these sensors will activate/deactivate before the other and the direction is known. The cost
of reflective optical sensors is approximately 0.99 USD for ten pieces of the model TCRT5000 each
consisting of an IR diode and an IR phototransistor [10].

4.1.2 Rotation

We will now consider three different sensors for measuring rotational movements.

Gyroscope

A gyroscope detects rotational velocity. A rotational velocity is a change in orientation over time.
This can be expressed in units of radians per second. To measure rotational velocity we can use
the MPU-6050 which also includes an accelerometer [6].

Rotary Potentiometer

A rotary potentiometer, like the sliding potentiometer, is an analogue device with a resistance
depending on the position of the knob. A price example for five pieces of rotary potentiometers is
1.18 USD for five pieces [11]. This method can be used if the base of the potentiometer is fixed,
but on a moving handle, it may be difficult to attach the rotary potentiometer on the handles of
the football table we are using.

Rotary encoder

The rotary encoder follows the same technique as the linear encoder. To measure rotation instead
of translation we can colour the black and white stripes along the handle instead of around the
handle as shown in figure 4.3 and therefore use the same sensor-model. We can use a rotary encoder
to measure changes in rotary position when the IR phototransistor is triggered by the black and
white stripes. As the TCRT5000 is also able to measure change in rotational position, the price
example is the same as for the linear encoder.
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Sensor Discussion and Choice

Based on the description of the six sensors, we will now discuss which sensors will be used in this
project. Table 4.1 summarises the characteristics for the different sensors.

Sensor Type Movement Data Price example / component

Accelerometer Translation acceleration 1.18 USD / MPU6050

Sliding potentiometer Translation position 0.75 USD / 75mm sliding

Linear encoder Translation ∆position 0.1 USD / TCRT5000

Gyroscope Rotation Rotary velocity 1.18 USD / MPU6050

Rotary potentiometer Rotation Rotary position 0.24 USD / Rotary potentiometer

Rotary encoder Rotation ∆ Rotary position 0.1 USD / TCRT5000

Table 4.1: Summary of the different sensors’ characteristics where ∆ signifies change in position
instead of absolute position

We need to measure both the translation and rotational movements. One approach would be to
use a combination of multiple sensors to measure movements. The advantage of this is that it will
add redundancy of the measured data that can be used to compare data from different sensors to
increase reliability and accuracy of the measurements. The disadvantage of using multiple sensors
is that we will have to spend a lot of time mounting the different sensors on the football table.
Because we do not own the football table used in this project we need to mount and remove all
sensors each time we are testing. This makes the use of multiple different sensors impracticable.

The advantage of using the sliding and rotary potentiometers is that they provide position data
which is more preferable than velocity or acceleration data as explained in section 2.1. The disad-
vantage of using potentiometers is that because they measure position they need at reference point
i.e. the base or the knob of the potentiometer must be at a fixed position while the other part of
the potentiometer is moved by the handle. This makes it difficult to mount on the football table
without making modifications to the table.

The strip for the linear and rotary encoder could be constructed and mounted on the handle using
paper and Duct tape. The disadvantage of the linear and rotary encoders is that the resolution of
the encoder is limited by the size of the black and white stripes which depends on the size of the
optical sensor detecting the stripes. The width of the optical sensor TCRT5000 is 5.8mm [12] which
will result in a low resolution of the data from measuring the rotation because the circumference of
the handle is only 44.6 mm, which gives us a resolution of 7.58 points per rotation.

An advantage of using the MPU-6050 is that it can both measure translation and rotation of
movements using its internal accelerometer and gyroscope. Another advantage of the MPU-6050
compared to the other sensors is that it is less mechanical as it does not have any moving parts.
Because the MPU-6050 measures acceleration and rotational velocity, it does not require a reference
point like the other sensors, which enables the entire sensor to be mounted directly on the moving
handle. The disadvantage of the MPU-6050 is that we cannot determine the exact position of the
handle, since we are only measuring acceleration and rotational velocity as discussed in section 2.1.

We choose the MPU-6050 because it can be used to measure both translation and rotation without
any mechanical parts. Another advantage is that mounting it to the table is possible without
making modifications to the table itself. By making said choice, we assume that it is possible to
identify people based on translational acceleration and rotational velocity.
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4.2 Embedded Platform

In this section we will choose which embedded platform we will use for data collection. Before
we can do this we need to consider what is required of the embedded platform. From the three
milestones in section 3.1 and the choice of sensor in section 4.1, we have the following requirements
for the embedded platform: The platform . . .

1. must be able to collect data about handle movements, which includes:

(a) Reading data from a MPU-6050
(b) Transferring data to a PC

2. must be able to evaluate a ML model to classify between two players

3. must be able to train a ML model to classify between two players

The second and third requirement depend on which ML model we choose. Initially, we will have to
solve the first requirement in order to collect data that we can use to analyse different ML models
on a more computationally powerful system like a PC. We will then update the embedded platform
to be able to execute and train the model we choose. In section 4.1, we chose the MPU-6050 to
collect movement data. The MPU-6050 sends its readings via the I2C protocol [6]. From this we
know that the embedded platform should be I2C compatible. Another requirement for the first
milestone is that the embedded system must be able to send the data to a computer for further
analysis. Based on requirement 1a and 1b we have selected three embedded platforms to choose
between: Arduino, NodeMCU, and Raspberry Pi.

Arduino (ATmega328P) The first embedded platform we will consider is Arduino which is
described as: “. . . an open-source electronics platform based on easy-to-use hardware and software.”
[13]. There exists several different Arduino development boards [14]. In this section we will consider
the Arduino Nano board [15]. We consider this board because we already have several of these
available but also because they are small, meaning they will be less in the way when attached to
the football table. We have experience with the Arduino platform from a previous project where
we created a new programming language for Arduino called Tang [16].

The Arduino Nano has an ATmega328P microcontroller with a clock speed of 16MHz enabling up
to 16 million instructions per second (MIPS) [15]. It has 2kB of SRAM, and 32kB of flash memory
for storing the compiled program [15]. The dimensions of the Arduino Nano are 18mm x 45mm
and it weighs 7 grams [15]. The Arduino Nano microcontroller has an I2C compatible interface
which we can use to communicate with the MPU-6050. The Arduino Nano also features a serial
USB connection [17] which we can use to send the collected data to a PC.

NodeMCU (ESP8266) The second embedded platform we will consider for the data collec-
tion is NodeMCU which is described as: “An open-source firmware and development kit that helps
you to prototype your IOT product within a few Lua script lines” [18]. We consider this embedded
platform because we already have one NodeMCU devkit 1.0 (from now referred to as NodeMCU)
board available and it is possible to program it through the Arduino environment which we also
have experience with.

The ESP8266 used in the NodeMCU has built-in support for WiFi and a clock speed of up to
160MHz (≈ 20% throughput used by WiFi stack) [19]. The NodeMCU has 4MB of flash where the
compiled program is stored [20, 21]. The unused flash space can be used for non-volatile storage.
The dimensions of the board are 25mm x 48mm [21]. The NodeMCU microcontroller has an I2C
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compatible interface [19] which we can use to read data from the MPU-6050. To send data to a PC
we can use the built-in WiFi.

Raspberry Pi (ARM-processor) The third embedded platform we will consider is the
Raspberry Pi, which is described as: “A small and affordable computer that you can use to learn
programming” [22]. There are different Raspberry Pi boards. We will consider the Raspberry Pi
Zero as it is small in size with dimensions of 30mm x 65mm [23]. There are two variants of the
Raspberry Pi Zero; one with WiFi and Bluetooth and one without.

We will consider the variant with WiFi and Bluetooth support called Raspberry Pi Zero W. The
Raspberry Pi Zero W has a 1GHz ARM processor and 512MB of RAM [24] and is capable of
running a full GNU/Linux-based operating system or a limited version of Windows [25].

Embedded Platform Discussion and Choice

The Arduino Nano has no built-in wireless capabilities and therefore must be connected to our
computer using a USB-cable or combined with a wireless module of some kind, which adds com-
plexity and costs to the project. This is impractical for our purposes and as such we chose not to
use Arduino Nano for this project.

As seen in table 4.3, both the Raspberry Pi and the NodeMCU have a higher throughput than the
Arduino Nano and have built-in WiFi, with the Raspberry Pi also supporting Bluetooth. If we
were to choose the Raspberry Pi, we would be able to use high-level languages like Python and we
could worry less about problems regarding speed and memory consumption. The NodeMCU on the
other hand is cheaper than the Raspberry Pi, physically smaller and consumes less power as seen
in table 4.2, but we may have to come up with a more creative solution in order for the product to
work under the restrictions presented by its limited resources. This would however lead to learning
more about working under said restrictions, which is of interest to the group. Considering these
arguments, we choose the NodeMCU.

Estimated price Worst-case power consumption Parameters for worst-case

Arduino Nano(ATMega328P) 2.38 USD [26] 21.12mA@5V, 9.46mA@3.3V [27] 20MHz,

Full swing crystal oscillator

NodeMCU (ESP8266) 3.26 USD [28] 320mA@3.3V [29] Peak current at startup

Raspberry Pi Zero W 14.14 USD [30] 230mA@5V [31] Shooting 1080p video

Table 4.2: Worst case power consumption and price ranges for the processors

Clock speed RAM size Non volatile storage Width x Length

Arduino Nano 16 Mhz 2 KB 1 KB EEPROM + 32 KB Flash 18mm x 45mm

NodeMCU 160 Mhz 96 KB 4 MB (QSPI Flash chip) 25mm x 48mm

Raspberry Pi Zero W 1 Ghz 512 MB Plenty (SD CARD) 30mm x 65mm

Table 4.3: Comparison of specifications for the different embedded platforms
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4.3 Hardware Design for Data Collection

Based on our choice of sensor and embedded platform, we will now design how these can be combined
into a movement-measuring device.

4.3.1 Mounting and Positioning of Device

In this section we will discuss how the different parts of the device will be connected and mounted
on the football table. We will prefer a solution that is easy to mount as we will have to reattach
the device each time we perform tests. We will first discuss the position of the sensor.

Sensor Position The placement of the sensor is important, since the data will change drasti-
cally depending on the position relative to the movement. The sensor needs to measure the rotation
and translation of the handle and therefore needs to move with it, to measure these movements.

Inside Game The sensor will be placed on the handlebar inside the playing area.

The cons of this placement are that it might obstruct the vision of the playing area and depending
on the rest of the device it might also interfere with the ball. The box might become damaged as
a result of being hit by the ball.

Outside game The sensor will be mounted on the end of the handlebar, on the grip, which is
not inside the playing area.

The does not interfere with the actual game, but limits the size of the device significantly since it
must not get in the way of the player. This might also cause problems with mounting the device
securely enough, to prevent it from falling of the bar in the middle of a game.

Since the electronics are placed outside the game, they will not be at risk of damage from the ball.

Choice With these two options, we choose to place the sensor inside the game since we do not
suspect it will interfere greatly with the game compared to placing the sensors outside the game on
the handles where it might take up space otherwise used by players. As the box is made of high
impact polystyrene (HIPS), and since the box is placed above the board, it will rarely be hit by the
ball and will not be damaged, if it is hit.

NodeMCU and Battery Position The NodeMCU can also be mounted in multiple
different ways. It is important here to consider that the NodeMCU will need a wired connection to
the MPU-6050 as well as a power source.

Complete Device on Bar The complete device with NodeMCU, batteries, and the sensor will
be mounted on the bar and rotate with it. This might cause the bar to become unbalanced and
interfere with the game, but it will be easy to mount.

Only MPU-6050 on Bar Only the MPU-6050 will be mounted on the bar and the rest of the
device will be mounted elsewhere on the table and connected with wires to the sensor.
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This will only put minimal weight on the bar, but the wires connecting the sensor and microcon-
troller might easily get tangled. This approach will also limit rotational movement as the bar cannot
be rotated more than once or twice before it needs to rotate the other way to untangle the wires.

Choice We choose to put the complete device on the bar, since we think that its size and weight
will interfere less with the game than having wires and needing to untangle these during a game.

Figure 4.4 illustrates the chosen position of the NodeMCU and the MPU-6050.

Figure 4.4: The chosen position of the NodeMCU and MPU-6050. The x, y, and z direction of
the MPU-6050 are illustrated by the arrows from the MPU-6050 where x is in the direction of
translation of the handle

4.3.2 Board Layout

The components need to be connected in a way so they will not disconnect when playing.

Components The components needed are as follows.

• On/Off switch

• Status LED

• Batteries

• MPU-6050

• NodeMCU

We need some way of turning the device on and off without unmounting the mechanism from the
handlebar and a way to easily restart the device while mounted during tests.

We add a status LED which will be used to indicate different states of the system.

We need to power the devices. We have chosen to use type 18650 batteries because they are
rechargeable and the ones we already own have a capacity of 1000mAh per cell. We have measured
the current used by our ESP8266, connected to WiFi and an MPU-6050, as 85mAh at 8.01V (two
fully charged type 18650 cells in series), which means that two cells can supply enough power for
1000/85 ≈ 12 hours of data collection.
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We will of course also need the sensor (MPU-6050) and the microcontroller (NodeMCU) which will
send the data to a receiver.

Schematics The sensor needs 3.3V power, ground, and a pin pulled either high or low (this
indicates the I2C address of the sensor) as well as an I2C data- and clock-line.

The status LED is connected to pin D0 of the NodeMCU and needs a current-limiting resistor. The
NodeMCU is connected to the batteries in series with the on/off switch.

Figure 4.5: Schematic of the Data-collection device

Board Type We have three board types we can use to create this circuit:

• Solderless breadboard

• Perfboard

• Custom PCB

The breadboard works by holding the wires by friction. Since the board will experience rapid
movements, we do not think this will be sturdy enough. The other two options will involve soldering
the components together and will work about equally well in our case, so we choose the perfboard,
as it is the cheaper and simpler option for very small quantities.

4.3.3 Device Enclosure

The enclosure needs to realiably hold the sensor in the same position relative to the bar every
time it is attached, but still be disassemblable, so the sensor can be swapped out and the batteries
recharged. The enclosure also needs to house the other components in a secure way, so they will
not be damaged by the ball.

The enclosure also needs to be mounted in a way that it will not rotate or move on the bar when
playing.

Considering this, we want to build some kind of box capable of being mounted sturdy on a cylindrical
metal bar and protecting the components, while not being so big that it can hit the ball as the ball
passes beneath it on the table during a game.
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Final Design The designed box is shown in figure 4.6. The electronic components are placed
in one side of the box, while the batteries and on/off switch are placed in the other to keep the
balance. The box is mounted with threaded rods passing through each corner, and M4 nuts are
tightened at each end, squeezing the box onto the bar and holding it tight.

This proved to be an effective way of mounting the box.

(a) 3D model (b) Physical box

Figure 4.6: Device enclosure

4.4 Implementing Data Collection Software

Figure 4.7 shows a flow diagram of the firmware for the data collection node implemented for
reaching Milestone I. Initially, the setup method is run where the MPU-6050 is configured. The
loop is then entered where we first check if we have received a package. If a package has been
received from a PC we save the IP of the PC so that we later can send information back to the PC.
A check is then made to see if it is more than 2ms since the ESP8266 last read data from the MCU
and if more than 2ms has elapsed, data is read and sent to the PCs IP over UDP. The loop is then
repeated ad infinitum.
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Figure 4.7: Flow diagram for node in milestone 1

When choosing which communication protocol to use for sending data to a computer over WiFi,
we consider the two primary options: Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). The two protocols are different in several ways. TCP is more reliable but with
slower speed as a trade-off in comparison with UDP. By performing a handshake, TCP enables two
devices to ensure communication between them, allowing them to check that the data being sent
is received in the right order and with intact data [32], but is slow compared to UDP. Even though
UDP is unreliable, it still checks for errors in the sense that it has a checksum that needs to match
the package and if it doesn’t match, it’s dropped, as opposed to TCP which would ask the device
to re-send the incorrect package [32].

Initially, TCP was used as the communication protocol for this project, but it was realised that in
order to collect data to represent human movement, we needed a sampling rate too fast for TCP
to handle, as described in section 4.5.

As UDP allows us to send packages rapidly, this means that even if data is lost, we will still be
gathering more data because of the higher sampling rate.

4.5 Data Sampling Rate Limit

To achieve the best result possible, when the data collected is used for prediction, the maximum
amount of information should be preserved. Any information lost from the collected data, could
result in the loss of an important feature, which may mean a less precise prediction. We will only
consider shots as we in chapter 6 will process the data collected from the chosen sensors to extract
features for ML models.

The obvious way to preserve all the necessary information, is to gather data with the highest
fidelity possible, given the chosen hardware, and use all the information as input to the ML model.
The problem with this approach is, that, as stated in the problem statement, the ML model will
eventually run on an embedded system. This means that there are limited resources to both store
and run the ML model. For this reason, this section will analyse the data collected to determine
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the frequency of the relevant data when playing table football, and thereby give an estimate for the
necessary frequency of data collection, to preserve the relevant information.

The first step in determining an estimate of the minimum frequency for data collection is analysing
the frequencies of the relevant data. To do this, a preliminary test will be conducted, to analyse
the data. The recorded gyroscopic data of a single shot can be seen plotted below:
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Figure 4.8: Gyroscopic data shown for a single shot

The data is collected with an average frequency of 500Hz. This means that data points are collected
approximately every 2ms (see section 4.4). The bottleneck for the frequency of data collection is
the speed of communication between the sensor and the embedded processor. A sample rate of at
least 2000Hz, or every 0.5ms can be achieved, but would make it impractical to wirelessly transfer
the data, since it would take up most of the processing power.

The graph in figure 4.8 shows the data collected for a single shot, but for the actual frequency
analysis, all shots in the dataset are used.

The shot seen in figure 4.8 creates large fluctuations in the rotation around the x axis, which is what
represents the relevant data for a single shot. Each shot is extracted, and appended to an array.
The relevant data has a range of frequencies it appears within, which can be helpful to determine,
at what frequency the sensors need to collect data. As the relevant data in the shots reach higher
values than the average values before and after the shot, the frequency of the shot will reach higher
amplitude as well. This can be used to determine the frequency of the relevant data contained in a
shot. To plot the frequency domain, the discrete-time Fourier transform of the dataset needs to be
calculated. A mathematical library for Python was used, called NumPy [33]. The resulting graph
showing the shot in the frequency domain can be seen in figure 4.9.

What is seen in figure 4.9, is the discrete Fourier transform of the 47 shots identified in the dataset.
To successfully perform the Fourier transform on a dataset, the data has to be equally spaced in
terms of time. Since the interval varies for the collected data, linear interpolation is used to correct
this. As can be seen in figure 4.8, the only significant axis of rotational velocity is the x-axis. For
this reason, this is the only data selected for the Fourier transform.

The frequencies observed in figure 4.9 shows that the majority of information is contained in fre-
quencies ranging from 0Hz to 20Hz. This indicates, that the large fluctuations visible on the time
domain graph 4.8, is ranging in the same frequency range. The remaining frequencies observed,
is considered noise, and is not taken into consideration, when choosing the lower bound of data
collection sampling rate.

To calculate the lower limit of the sampling rate to get a valid output, we can make use of the
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Figure 4.9: frequency domain of the data

Nyquist-Shannon sampling theorem [34]. The Nyquist-Shannon sampling theorem presents a sam-
pling rate that is acceptable in regards to capturing the necessary samples without losing important
information. According to [34], the theorem may be stated as “The sampling frequency should be
at least twice the highest frequency contained in the signal. Or in mathematical terms: fs ≥ 2 · fc
where fs is the sampling frequency . . . and fc is the highest frequency contained in the signal.”.

However, according to [35][p. 13], the sampling rate may be a lot higher than double the highest
frequency contained in the signal: “It is not unreasonable to sample the data at 5 times the Nyquist
limit to ensure the integrity of the data in both the frequency and time domains.”. This depends on
multiple factors, especially the constraints of disk space.

Based on the Nyquist-Shannon sampling theorem [34], it can be concluded that a lower limit for
the sampling rate should be twice that of the frequency of the relevant data.

fs = 2 · 20Hz = 40Hz (4.1)

The lower limit to the sampling rate of 40Hz is equivalent to a maximum spacing of the data
points of 25ms. This means that our frequency of 500Hz leaves us at more than ten times the
Nyquist-Shannon, which ensures the integrity of the collected data.

4.6 Test of Milestone I

Purpose In the first milestone our goal is to make an embedded system that is able to collect
data from the movement of players in a table football game, as specified in section 3.1. The purpose
of this test is therefore to validate the embedded system created for this milestone and check if we
are able to collect data from the chosen sensors and that the collected data conforms to reality.
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Test Setup The test setup can be seen in figure 4.10. In figure 4.10a, we see two computers set
up next to the football table, with the purpose of receiving and saving the sensor data sent from
the microcontrollers in the boxes. Figure 4.10b shows the two boxes (nodes) attached to the same
handle of the table. The boxes are identical in regards to measurements and components and are
both facing the same direction.

(a) Picture showing the football table setup
with the computers receiving sensor data

(b) Picture showing how two boxes are at-
tached to a single handle to verify that the
data we receive is consistent

Figure 4.10: Pictures showing the setup for the test of milestone 1

Test Procedure Start filming two nodes and then turn on the two nodes simultaneously to
synchronise the sensor data with the film. Turn on the data collection script from two different
computers at the same time (one for each node). Attach the camera to a stationary position to film
the boxes. Now perform the following movements to test the sensors:

1. Four slow translations

2. Four quick translations

Stop the data collection scripts and the video recording.

Test Result To compare the results of the sensors with respect to each other and the recorded
movie we plotted the sensor data and loaded the video into LoggerPro [36]. The comparison of
sensor A (orange) and B (blue) is shown in figure 4.11 while the result of analysing the video is
shown in figure 4.12.
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Figure 4.11: Data from each box compared
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Figure 4.12: Data from Logger Pro
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(b) Data from each box compared for the time period from 10 seconds to 10.6 seconds

Figure 4.13: Two points in figure 4.11 with data loss

Test Discussion As seen in figures 4.11 and in 4.12, the graphs seem alike with minor dif-
ferences. However, looking closely at the movements between 4-5 seconds and at 10-11 seconds,
major inequalities between the two graphs are seen. These differences are enlarged in figure 4.13a
and 4.13b respectively. A straight line instead of a thick line (composed of several dots indicating a
measurement has been made) implies a period of time where no packages have been received. The
reason for this data loss could be our choice of communication protocol. UDP does not confirm
that a package has been received, which means that after sending a package, interference on the
network or connection issues may result in the computer not receiving the package.

As UDP is quicker than TCP, we either have to accept a slower sampling rate to ensure less
unexpected data loss or accept loss of data. Another solution, based on the assumption that the
loop will run slower the more data it has to process, we could try to minimise the amount of data.
This could e.g. be done by refraining from using ASCII encoded data, as this requires more bytes
to contain the same information as a binary encoding.

We have now reached the first milestone as we have developed an embedded system to collect data
about movements of the handles.
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Milestone 2
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Chapter 5

Introduction To Machine Learning

In order to accomplish the milestone: “The embedded system must be able to classify which of two
players is playing based on a pre-trained model ”, we first need to select and pre-train a model which
we will integrate into the embedded system. Before we do this, we will give a brief introduction to
ML and select which type of ML we will use in this project.

5.1 Supervised and Unsupervised Learning

ML is considered to be a concept within artificial intelligence (AI) and is concerned with machines
that are able to learn by themselves based on e.g. past experience and observations [37, 38]. ML
techniques can be divided into two subcategories of ML: supervised learning (SL) and unsupervised
learning (USL) [38].

Supervised Learning In SL, data is generally split into a set of features. SL then works by
first using a training set to fit a model. The training set contains an arbitrary number of objects
and for each of these objects, a result. Based on the training set, SL can use different algorithms
such as support vector machines (SVM) or k-Nearest-Neighbour with the goal of e.g. establishing
a decision boundary which makes the machine able to determine the result of new input data. An
example of SL could be a classification in which objects are grouped into classes based on some
features.

Consider an example where we have to determine whether a fruit is an apple or an orange. In this
case, data would be collected for both types of fruits and depending on the data collected, possible
features of the fruits could be shape and colour. Each combination of data is then classified according
to whether they are associated to an apple or an orange.

According to [38], SL algorithms are often fast and precise but they require proper training and
validation. Furthermore, SL algorithms must be able to generalise new data that can accurately
predict previously unseen data.

A model that is unable to generalise has been overfit or underfit during training. Underfitting is
when the model is not able to determine the proper relation between the features and the output
labels and thus will not generalise new data [39, 40].

Overfitting, on the other hand, may occur if the model has been trained in such a way that the
prediction function accommodates for noise by fitting the function on the test set such that all
training data are labelled correctly. Examples of overfitting and underfitting are illustrated in
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figure 5.1b and figure 5.1a, respectively where the blue and orange colours denote different classes
and where the circles and squares are train and validation data, respectively. A validation set is a
set of data that is not used to train the model, but to check how well the model generalises using
unseen data.

(a) Underfitting (b) Overfitting

Figure 5.1: Underfitting and overfitting

Unsupervised Learning In USL the models are not trained with pre-determined result
labels and thus are not told during training what the desired result is supposed to be [37]. An
example of USL is clustering where unlabelled data is categorised into clusters based on their
similarities [41]. The purpose of USL algorithms differs from the SL algorithms in the sense that
USL is not concerned with a simple goal such as making a prediction, but rather discovering
interesting relations in the data like dividing the data into subgroups [42].

An advantage of USL is that it is easier to gather unlabelled data, as labelled data often requires
human interaction [42]. Because USL can be used to understand and find information about data
it can be useful to use USL techniques combined with SL techniques for e.g. feature generation [42].

5.2 Machine Learning Models

As described in section 5.1, ML models can be divided into two sub-categories, namely SL and
USL. For this project, we will be using SL as the goal is to classify or identify people playing table
football. However, USL could be suitable to use if the goal was to cluster data to e.g. tell which
players had a similar playing style. In the following subsections, we will analyse the performance
of different SL models in relation to identifying people playing table football.

To determine which ML model to use, we will compare the following three model types:

• Support Vector Machines (SVM)

• Logistic Regression (LR)

• Neural Network (NN)

We will discuss each of these models including some of the pros and cons of these models. Based
on these pros and cons we will discuss which model type to use in the remainder of the project.
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5.2.1 Support Vector Machines

The SVM model works by searching for the hyperplane, that best divides a dataset [43]. The
distance between the hyperplane and the nearest point from the training set is referred to as the
margin, our goal is to find a solution to our problem, that has the largest margin possible.

The idea behind an SVM is its ability to transform a non-linearly separable problem to one that is
linearly separable [44] by raising the dimensionality of the feature space. Sometimes it is difficult,
with one line, to completely separate the points, e.g. the red and blue dots (see figure 5.2a).
However, changing the y-axis to z = y2, we are able to easily divide the blue and red dots, as seen
in figure 5.2b. SVM models are able to consistently reach a global minimum of a problem, whereas
other models often only reach a local minimum in the feature space [43]. Another advantage
of an SVM, which e.g. a NN does not benefit from, is the possibility of reproducing the results
if the same parameters and data are used. A NN is typically initialised with random weights,
making it very difficult to reproduce the same results every time [44]. Disadvantages of using SVM
include its computational costs. SVMs are concerned with finding optimal hyperplanes and for
non-linear classification problems this “. . . is a complicated and computationally expensive task.”.
[45]. Furthermore, SVMs perform badly when there is a lot of training data and when the data is
noisy [46].

(a) Feature space with non-linear separable problem
(b) Same data as in 5.2a, but with a new y-axis equal
to y2

Figure 5.2: Illustration of how adding a new dimension may help dividing points

5.2.2 Neural Network

Neural networks (NN) consist of neurons organised in an input layer, an output layer, and some
number of hidden layers between these. Based on certain weights between neurons, a NN is able to
predict which output is more likely given a certain input.

A disadvantage of the NN models is that for a network with hidden layers it is difficult to tell
what exactly feature representations these hidden layers represent. When training the weights in a
NN a technique known as backpropagation is often used, however, when using backpropagation we
“. . . need a very large number of training samples and need a lot of time to gradually approach good
values of the weights. Adding new information requires retraining and this is computationally very
expensive for Backpropagation Neural Nets . . . ” [47]. Furthermore, for NNs we are not guaranteed
that we find a global minimum for the error and can thus converge to a local minimum instead [43],
as opposed to SVMs.
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5.2.3 Logistic Regression

Logistic regression (LR) is a classification algorithm used for predicting binary outcomes. Suppose
a linear function: Y = w0 + w1 · x1 + ... + wn · xn where w are weights and x are numeric input
values. Then logistic regression is concerned with minimising the error of the Sigmoid of this linear
function [48, sec 7.3.2]. Logistic regression can be trained to predict any linearly separable class;
given two classes there exist a decision boundary (linear function) that separates the two classes
[48]. For predicting multiple classes multiple LRs can be trained and their results combined to
make a single prediction. An LR model can be implemented as a simple artificial neural network
(ANN) with an input layer and output layer and a Sigmoid activation function.

5.2.4 Selecting the Machine Learning Model Type

The choice of ML model is based on a set of criteria, which fit the platform we have chosen.
Since the embedded system chosen in this project has comparatively lower capabilities, regarding
computational speed and memory than modern computers, an important criterion is to have fast
prediction speed and small model size. Since the input data has high entropy, the model should be
able to accommodate for this. The aforementioned criteria can be seen below:

• The model should have a low model size

• The model should allow input with high entropy

The data collected by the sensors is noisy and has high entropy and it is therefore likely that there
is not a linear relationship between the input features and the output features meaning that an LR
model would be imprecise. A problem with SVMs, as explained earlier, is that it can be difficult to
find a decision problem between classes if the data is noisy, which is the case for our project, as we
use accelerometers. Since we want to be able to make classification and training on an embedded
system, we need to be able to manually adjust the model size. This can be accomplished for a NN
by increasing or decreasing the number of e.g. neurons, layers, or labels, however this is not the case
for a SVM: “In contrast to neural networks SVMs automatically select their model size (by selecting
the Support vectors).” [43].

Based on an analysis conducted in the book Handbook of Research on Modern Systems Analysis and
Design Technologies and Applications [45], table 5.1 shows the average accuracy and computational
performance of SVMs and NNs measured on 100 classification problems. A rank close to 1 is the
best performing models and a rank close to 0 is the worst performing models. As can be seen in the
table the NN has higher average prediction accuracy than SVMs when tested on 100 classification
problems, however, the computational time of training and testing is larger for the NN model when
compared relative to the models used by [45].

Classifier 2 SVM NN

Average accuracy 0.585 0.621

Execution time 0.5 0.015

Table 5.1: Average accuracies and execution times of SVM and NN based on analysis in [45]

Since a one-layer NN with Sigmoid activation is equivalent to LR, we can simply choose to design a
simple NN if we determine that a simple model is sufficient to identify people based on movements
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in table football, while also having the flexibility to increase the model complexity. Furthermore,
we can manually select the model size when using NN (by adjusting the number of neurons and
layers) which is handy when we work with embedded systems as we have a low amount of memory.
Additionally, the analysis in [45] indicates that artificial neural network (ANN) has good average
accuracy compared to other models. For these reasons, we choose NNs as the type of models to
analyse and implement in the remainder of the project.

5.3 Neural Networks

NNs are a specific type of ML models used within SL and are inspired by how the human brain
works and learns. NNs consist of a set of neurons which are divided into a set of layers where each
layer has connections to the subsequent layer. A simple one-layer NN consists of an input layer and
an output layer. Any layer between the input layer and output layer is called a hidden layer. The
connections between neurons in the different layers have a weight associated with them which tells
how large an impact any particular input-value has on the output of a neuron.

Some NNs also have a type of node known as bias nodes. Bias nodes are similar to neurons in
the sense that each bias node associates weights to neurons in a particular layer. The difference
between the bias node and ordinary neurons is that the input to a bias node is always one. The
bias node is therefore independent of the input to the NN and since the weights of the bias nodes
are adjusted during training the NN is, therefore, able to learn to have a bias.

Figure 5.3 shows a simple illustration of a fully connected NN with four input neurons and a bias
neuron, one hidden layer with three neurons and a bias neuron, and one output neuron.

i1

i2

i3

i4

Output

Hidden
layer

Input
layer

Output
layer

Figure 5.3: NN with two layers and bias nodes (dark green and dark blue nodes)

To calculate the value of a neuron in a hidden layer or output layer, the weighted sum of inputs to
that neuron is calculated by summing each input multiplied with their associated weight plus the
weight of the bias node. Equation 5.1 formalises this where wqj is the weight between a neuron
q and a neuron j, ij is the j′th input value, and bq is the weight value from the bias node to the
neuron q.

xq =

n∑
j=1

(ij · wqj) + bq (5.1)
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Now, the value of the neuron, xq, has a value between positive and negative infinity which is fine
for regression problems, but assume we instead want to figure out which class a particular input
belongs to. Having a continuous output value would not help. To fix this we can use activation
functions.

An “. . .activation function, is a function from the real line [−∞, ∞] into some subset of the real
line such as [0,1] ” [48, sec. 7.3.2]. An activation function takes as input the weighted sum of input
of a neuron which is given by equation 5.1. The activation, “. . . transforms the signal non-linearly
and it is this non-linearity that allows us to learn arbitrarily complex transformations between the
input and the output.” [49]. In future sections we will refer to the output of a neuron as the output
of applying an activation function.

A simple activation function is the step function which, based on a threshold value, indicates
whether a neuron should fire [50, 51]. The step function is shown in equation 5.2 and visualised in
figure 5.4, where t is the threshold value and x is the weighted sum of input given by equation 5.1
[51].

f(x) =

{
1 if x > t

0 if x ≤ t
(5.2)

Figure 5.4: The step function

A problem of the step function is that if multiple neurons fire in the output layer, we cannot tell
apart which class we are most confident is the correct class, as multiple neurons will have the same
output value [50]. Another problem of the step function is that it is not differentiable which makes
it difficult to use when making gradient decent (5.3.1) [48, sec. 7.3.2]

The Sigmoid activation function is an example of a differentiable function and is given by: f(x) =
1/(1 + e−x) [48, sec. 7.3.2]. Figure 5.5 shows a plot of the Sigmoid function. The Sigmoid squashes
the input into a value between 0 and 1 where a value of 0 represents a neuron not firing and a value
of 1 represents the maximum confidence, indicating that a neuron is firing [52]. However, a problem
with the Sigmoid function is that when output values come very close to 0 or 1 the gradient is
almost zero (see figure 5.5). This gives rise to what is known as the vanishing gradient problem
where the network will not be able to learn [50, 52].
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Figure 5.5: The Sigmoid function

The rectified linear unit (ReLU) illustrated in figure 5.6 is another example of a differentiable
activation function. The ReLU is defined as f(x) = max(0, x) which is evidently faster to compute
that the Sigmoid function. However, as can be seen on the plot for the ReLU function the gradient
can for some input values go towards 0 resulting in dead neurons which of course means that the
output of that particular neuron will not contribute to the evaluation of the network. This problem
can be fixed using a modified version of the ReLU known as leaky ReLU [50, 52]. Leaky ReLU is
different from ReLU in that for negative input values there is a small slope.

Figure 5.6: The ReLU function

The Softmax activation function has the property that when applied to a layer, it outputs a prob-
ability distribution [53], and can, therefore, be convenient to use when we want to determine with
what probability our NN gives a specific output or how certain we are that our predictions are
correct. The Softmax function is shown below in equation 5.3 where aLj is the output of applying
the Softmax activation function to the j’th neuron in the L’th layer and x is the weighted sum of
inputs to a neuron as given by equation 5.1 [53].

aLj =
ex

L
j

n∑
k=1

ex
L
k

(5.3)

As explained in [50] and [52], there is no single correct activation function to use, however ReLU is
often used instead of Sigmoid due to the vanishing gradient problem. For classification problems the
Softmax activation function is convenient to use in the last layer to give a probability distribution
[53].
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5.3.1 Training a Neural Network

We will now briefly describe some of the techniques used for training a NN. Assume that all the
weights in the NN are randomly initialised; this will, of course, produce random outputs. To
improve the prediction accuracy we need to train the NN to weight each connection accordingly to
how much they matter for the desired output. In order to adjust the weight, we use a technique
called gradient descent which, based on training examples, tries to minimise the output error by
taking the negative gradients of some function with respect to its weights [54]. Consider figure 5.7
which shows the error E with respect to some weight w for some error function in the NN. We
want to adjust the weights in the NN to minimise error. By repeating this process the cost will
become lower as training progresses, and at some point, when the error converges to a minima or
if a stopping criterion is reached, training is stopped.

E

W

Figure 5.7: Sketch of the error as a function of a particular weight

To update the weights in a NN with more than one layer, backpropagation is used where each
weight in the NN is updated relative to how much influence they have on the error [54]. To find this
influence, the chain-rule of differentiation is applied by going through the NN from the output layer
and backwards, hence the values of the new weights are propagated backwards from the output
layer [55, sec: 7.5].

Let C be the result of some cost function (also called error function). We are interested in finding
how much a small change in the weights of the NN affects the cost of the NN . We want to find
values for the weights in the NN such that the cost is minimised [56]. To do so, we first want to
find out how much the cost changes with respect to the output of a neuron as follows: ∂C

∂a , where
a = f(x), f is some activation function like ReLU or Sigmoid, and x is given by equation 5.1 [54].
Furthermore, we also need to find out how much the output of a neuron changes in relation to its
input, thus we want to find the rate of change of the activation function with respect to the sum
of weighted inputs for that neuron, x [54]. Equation 5.4 gives the error of an output neuron with
respect to how much that neuron influences the cost function where δLj is the error for some neuron
j in the output layer L, aLj is the output of a neuron j in the output layer and f ′(xLj ) is how fast the
activation function is changing in xLj where xLj is the weighted sum of input to a neuron j in the
output layer L [54]. Equation 5.4 is the result of applying the chain rule of differentiation which
we need to do as, the output of a neuron is a composite function f ◦ g, where f is some activation
function and g is the function for calculating the weighted sum of input for some neuron in the NN,
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as given by equation 5.1.

δLj =
∂C

∂aLj
· f ′(xLj ) (5.4)

However, as explained earlier, we need to propagate this error through the network as we only know
the cost at the output layer and we are interested in finding the error in each layer so that we, at a
later time, can find the rate of change for the weights with respect to the cost function. The error
in the hidden layers is again a result of applying the chain rule and is given by equation 5.5. In
equation 5.5, δli is the error of neuron i in layer l which is given by summing the weighted error for
each connection wij to a neuron in the subsequent layer and multiplying the result with the rate of
change of the activation function f given xli.

Figure 5.8 shows a NN with three highlighted neurons (coloured). Assume that errors E1 and E2
have been calculated for the purple and teal output neurons using equation 5.4 then we backprop-
agate the error to the blue neuron as follows: f ′(x) · (w1 ∗ E1 + w2 · E2) where x is is the sum of
weighted input to the blue neuron.

δli = (

n∑
j=1

δl+1
j · wij) · f ′(xli) (5.5)

Now that we know how to propagate the error through the neurons of the network, we can find
the partial derivative of the cost function with respect to each individual weight in the NN. This
tells us how changing each weight in the NN affects the cost of the NN. Suppose that we want to
find ∂C/∂wij which is the partial derivative of the cost function with respect to some weight wij

where i is some neuron in layer l, j is some neuron in layer l + 1 and wij is the weight between
these two neurons. Then we can find the partial derivative of a particular weight in the NN by
simply multiplying ali with δ

l+1
j which is the error of the j’th neuron in the l+ 1 layer [54]. This is

formalised in equation 5.6 [54]. Looking at figure 5.8 we can calculate the partial derivative of the
cost function with respect to the weight w1 (orange connection) as follows: f(x) · E1

∂C

∂wij
= ali · δl+1

j (5.6)

Figure 5.8: ANN with errors E1 and E2 in the output layer

Similarly, we can calculate the impact that a particular bias has on the cost of the network as given
by equation 5.7 [54], where b is the bias node in layer l and wib is the connection between the i’th
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neuron and the bias node in this layer. Note that we do not have to multiply with the output
activation as the input to a bias node always is one.

∂C

∂bli
= δli (5.7)

When we have calculated the partial derivative of the cost function with respect to a specific weight,
∂C/∂w, we can adjust that weight according to some constant learning weight as given by equation
5.8, where neww is the new weight, oldw is the old weight, and η is the constant learning factor [48,
sec. 7.3.2].

neww = oldw − η ·
∂C

∂w
(5.8)

The explanation above illustrates learning where the weights are updated after each training exam-
ple, also known as stochastic gradient descent [57]. An alternative to this is batch gradient decent
where weights are updated after each batch of examples [48, sec. 7.3.2].

Cost Functions play an important role in training a NN as explained earlier. An example
of a cost function is the squared cost function (equation 5.9), where the error of a single training
example is calculated by taking the difference between the output and the expected result, squared.

Cresult,expected = (expected− result)2 (5.9)

There exist different cost functions and two assumptions that should hold for cost functions used in
backpropagation are: They should be able to be written as a function of the output of the NN and
the cost should say something about the actual output of the NN relative to the expected output
[54, 53]. This means that when the actual output is close to the expected output the cost should be
close to zero [54, 53]. The second assumption is that the cost function should be able to be written
as an average over cost functions of the training examples [54].

5.4 Recurrent Neural Networks

Recurrent neural networks (RNN) are a modification of artificial neural networks (ANN) and are
used for making predictions given sequence data [58]. RNNs differ from ANNs by not assuming
that all inputs and outputs of a NN are independent of each other [59]. RNNs are by definition
recurrent in that they use unrolling to apply some function, f, over an entire sequence. During
this sequence, the output of each element in the sequence is dependent on previous computations.
Simple RNNs, as those described so far, are difficult to train due to the vanishing gradient problem
[60]. Figure 5.9 shows a simple illustration of a RNN where a network is being unrolled t times.
Note that I1...It and O1...Ot are input and output vectors, respectively for each network from 1...t
and s is the hidden state at each time step [59].
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Figure 5.9: Illustration of a RNN

To make training the RNN easier, we will be using a more sophisticated class of RNNs called Long
Short-Term Memory networks (LSTM). LSTMs are a modified version of the previously described
RNNs and is designed to avoid the problems introduced by the exploiting and vanishing gradient
problem which makes learning over a long time span difficult [61]. The key part of the LSTM is
that information is stored in a cell from which data can be read, written and updated. The cell is
structured by different gates that open and closes which determine which data is removed, updated,
and other decisions [62]. We will not go into detail explaining LSTMs, however, one should think
of LSTMs as a type of RNN with memory cells. In the remainder of this report, we will use the
names LSTMs and RNNs interchangeably. LSTMs are further explained in [61] and [62].
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Chapter 6

Data Processing

In this section we describe how we can manage and process the raw sensor data to use it for
training and testing different ML models. The data processing involves labelling, scaling, filtering
and grouping the data.

6.1 DataHub

Given the collected data we want to . . .

• keep track of the collected data

• visualise the data to make it easier for the group to see values instead of raw text

• label the data i.e. associating data with the person who played during the data collection

• process the data

To test and analyse results of different ML models we also want a way to . . .

• manage ML models

• manage tests

• compare the accuracy of different models given a test

To do this, we develop a system called DataHub to facilitate these tasks.

6.1.1 Architecture

We choose to develop the DataHub as a web application to make it available to all group members on
any device and at any location. For this, we use a client-server architecture where the user interface
is presented in a browser on a client computer and the data management is handled centralised
with an API and a database on a server. The architecture for the DataHub is shown in figure 6.1.
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Figure 6.1: DataHub architecture

The database component stores datasets, labels (players), LM models, tests, and relations between
these. The API component offers an interface of functions to manage the entities in the database
component, and also allows querying. Finally, the user interface component makes the functions in
the API component accessible for users through a graphical interface. The DataHub architecture is
an example of a closed-strict architecture meaning that each component is only dependent on the
component just below.

6.1.2 Data Modelling

To model the structure of the domain, we can construct an entity relation diagram (ERD) showing
the different entities in the database component and how these are related. The ERD is shown in
figure 6.2.

Figure 6.2: Entity relation diagram for the database component in the DataHub

The boxes in figure 6.2 represent the entities and the lines represent relations between entities. The
type of relation is represented using 1 and * where e.g. there is a one-to-many relationship between
Test and Test Result meaning that each test is related to 0 or more test results while each test
result is always associated a single test. Another example is the many-to-many relation between
Test and Dataset indicated with * and *, meaning that each dataset may be associated with zero
or more tests and vice versa.

6.1.3 Uploading Data

After receiving the data from the embedded system and saving this into a comma separated file
(csv-file), we want to be able to upload this file to the DataHub to represent it as a dataset entity.

36



Chapter 6. Data Processing 6.1. DataHub

To do this, we have a function in the API component which handles the upload process. This
function is then used by the user through the page shown in figure 6.3.

Figure 6.3: DataHub upload page

6.1.4 Visualising Data

To visualise the uploaded data, we have a function in the API component which returns the data
points to be visualised as shown on the page in figure 6.4. The charting API used is called Highcharts
[63].
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Figure 6.4: DataHub visualisation page showing the data collected during a game of table football

6.1.5 Labelling Data

To manage the relationship between datasets and labels we create the page shown in figure 6.5.
At this page, we can select each dataset and afterwards select which labels are associated with it.
For player classification, we only select one label that is the player who played during the data
collection.

Figure 6.5: DataHub label page
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The model and test management in the DataHub will be described later in relation to the test of
the different ML models. Before we describe this we will now look at how we can create a more
structured representation of the data from an entire table football match.

6.2 Grouping Data into Movements

We now have functionality to upload, manage, and label data in the DataHub. To test different ML
models we need to find a way to simplify and structure the data. The reason for this is that if we
sample data from the MPU-6050 with an interval of 2ms then the amount of data being collected
during an entire table football match of e.g. 5 minutes will be 5 · 60s · ( 1

2ms ) · 6 · 2 bytes = 1800000
bytes. Storing this amount of data is expensive, especially considered the low amount of memory
of most embedded systems. For this reason the data points we collect are downscaled in size by
taking the average over 20 data points as shown in listing 6.1.

1 [. . . ]
2 List <Data > downScaled = new List <Data >();
3 t = 0; x = 0; y = 0; z = 0; rx = 0; ry = 0; rz = 0;
4 int counter = 0;
5 int scale = 20;
6 foreach (var datapoint in data)
7 {
8 t += datapoint.Time;
9 x += datapoint.X;
10 y += datapoint.Y;
11 z += datapoint.Z;
12 rx += datapoint.RX;
13 ry += datapoint.RY;
14 rz += datapoint.RZ;
15 counter ++;
16 if (counter == scale)
17 {
18 downScaled.Add(new Data() { Time = t / scale , X = x / scale , Y

↪→ = y / scale , Z = z / scale , RX = rx / scale , RY = ry /
↪→ scale , RZ = rz / scale });

19 t = 0; x = 0; y = 0; z = 0; rx = 0; ry = 0; rz = 0;
20 ccounter = 0;
21 }
22 }
23 [. . . ]

Listing 6.1: The code converting sets of 20 data points into an average downscaled data point

Looking at the plot in figure 6.4, we see that there is a clear distinction between silent moments
and movements, by looking at the size of the fluctuations. As the goal of this project is to identify
people based on movements, we want to group the data into movements and filter out the silent data.
This is done by filtering the data by rotation around x (RX) which is an indicator of movement
(see figure 6.4). A movement consists of at least ten downscaled data points, where we start
grouping (measuring) when detecting an RX value that is above 5000 or below -5000. We then keep
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measuring, until we have encountered ten ’silent’ downscaled points, i.e. ten downscaled points in
a row, all with an RX value between -5000 and 5000. The code for grouping movements is shown
in listing 6.2.

1 public class ShotIdentifier : IGroupIdentifier
2 {
3 public List <Group > Identify(List <Data > data)
4 {
5 bool measuring = false;
6 int zeroStreak = 0;
7 Stack <Data > groupData = new Stack <Data >();
8 List <Group > groups = new List <Group >();
9 foreach (var point in data)
10 {
11 if (measuring)
12 {
13 groupData.Push(point);
14 }
15 if (point.RX < 5000 && point.RX > -5000)
16 {
17 zeroStreak ++;
18 if (zeroStreak == 10)
19 {
20 groups.Add(new Group() { Data =

↪→ groupData.Reverse ().ToArray () });
21 groupData = new Stack <Data >();
22 measuring = false;
23 }
24 }
25 else
26 {
27 measuring = true;
28 zeroStreak = 0;
29 }
30 }
31 return groups;
32 }
33 }

Listing 6.2: The class ShotIdentifier.cs grouping data into movements (shots)

The code in listing 6.1 and 6.2 are implemented in the DataHub to downscale and extract move-
ments in the datasets which we can use in chapter 5 to train and test different ML models. The
classification task is now reduced to classification of a player based on individual movements instead
of classification based on data from an entire table football match. A limitation of the algorithm is
that it may remove data which can be used to identify a player.

As we sample at a rate of 500Hz, downscaling by a factor of 20, the resulting frequency is 25Hz.
Since this is less than the Nyquist-Shannon limit set in section 4.5, there is a possibility, that the
data for some movements do not represent reality accurately. For this reason, we must take into
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account that we might need to revise this algorithm later if we encounter low accuracy of the ML
models.
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Chapter 7

Analysing Machine Learning Models

Based on the pros and cons of the models analysed in chapter 5, we will select a subset of these
models which will be further analysed to see how well they perform for this problem. In order to
analyse the performance of the models, we construct a series of tests that each model will evaluated
against. Based on these tests we then analyse the performance of the different models. Finally,
we compare the different models, and from that analysis, we select the model to be used in this
project.

7.1 Model Analysis

In section 5.2.4, we chose NNs as the type of ML model to implement for this project. The purpose
of this section is to analyse different NN models relative to this project and determine which NN
model to use in the remainder of the project.

7.1.1 Test Suite

In this section, we will describe the test suite used for analysing different ML models in the remainder
of this section. As a tool for testing different ML models we use the DataHub as described in chapter
6. Figure 7.1 shows an example of a model for a particular kind of ANN with properties created
on the DataHub.
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Figure 7.1: Example of an ANN model created on the DataHub

The created models can then later be instantiated with different values for the parameters, as shown
in figure 7.2.

Figure 7.2: Example of an ANN model created with values

As described earlier in section 5.2.4, we have chosen to focus on analysing different NNs. Specifically,
we have chosen to test different variations of ANNs and RNNs which we do in section 7.1.2 and 7.1.3,
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respectively. To test these models, we have gathered data from three different people within the
project group by using the product described in chapter 4. To test the performance, of the different
variations of the RNNs and ANNs created on the DataHub, a test suite has been established from
the collected data and contains the tests shown in figure 7.3. In the remainder of the project,
the tests shown in the figure will be denoted test 1, test 2, and test 3 according to the order in
which they appear in the figure. The purpose of the test suite is to check the performance of the
ML models on the different subsets of the collected data. More precisely, we want to check how
the models perform when giving respectively two labels (test 1 and 3) and three labels (test 2).
Furthermore, we want to check how well the models perform when having more training data (test
1) in contrary to having less training data (test 3). To perform the tests an API has been created for
the DataHub where clients can request to get the data for the datasets contained in the test suite.
The datasets used in the tests are collected using the embedded system described in milestone 1
from matches between two players playing a match to ten goals.

Figure 7.3: Shows the three test for the analysis of the ML models

Encoding the Labels

When we create datasets on the DataHub each dataset labelled with the player’s name as a string.
Thus two possible strings could be Alice and Bob. In order to feed these labels to a NN, we will
need some kind of numerical representation. Thus Alice could be given the value 1 and Bob 2.
However, this will encode that there is a distance of 1 between Alice and Bob. This becomes a
problem when we increase the number of players. To avoid this problem we will encode our labels
using a technique called one hot encoding where each player is given its own value and assigned to
1 or 0 to indicate which category amongst all the others we are referring to. Lets look at a short
example for the Alice and Bob strings. In this case, we have two categories meaning that the total
numbers of distinct categories are exactly two, thus we have two values. Assume that we order our
labels lexicographical then Alice would be encoded as [1, 0] and Bob as [0, 1].

Calculating Accuracy

In order to compare different ML models, we need a measure of how accurate the models are at
classifying players correctly on test datasets. To do this we run each model ten times for each test.
We do this in order to capture that the error during training of NNs might converge to different local
minima depending on the initial random values assigned to the weights of the network. Each test
contains multiple test datasets. For each test dataset, there is an expected player to be classified.
Each dataset contains a list of movements that each model will classify. To determine a model’s
classification of a player based on a test dataset, we average the output of the model’s classification
for all the movements in the test dataset and select the class with the highest average value. To
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measure the accuracy we compare the expected player with the player classified by the ML model.
We can then sum all the correct classifications Ncorrect for the test datasets in a test and divide it
by the total number of test datasets in the test Ntotal to calculate the accuracy of the ML model
for a given test as follows.

Atestrun =
Ncorrect

Ntotal

This calculates the model accuracy based on a single run of a given test. Because we run the model
ten times for each test, we need a value to represent the combined accuracy of all test runs. To do
this, we average the accuracies Atestrun1, Atestrun2, . . . , Atestrun10 for the ten test runs.

Atest =
1

10

10∑
i=1

Atestruni

To get a measure of a model’s accuracy across all three tests we introduce what we will refer to as
the average accuracy as the average of the three test accuracies.

Avgmodel =
Atest1 +Atest2 +Atest3

3

7.1.2 Artificial Neural Network Analysis

In this section, we will analyse the accuracy of different models of artificial neural networks (ANNs).
We construct and test models to be able to determine if ANNs can be used to classify players and to
test the following hypothesis constructed by the group members which will give us more information
about the construction of ANNs. Hypotheses for different models given the same amount of training
iterations and tests:

1. Two hidden layers implies higher average accuracy than one hidden layer

2. For models with one hidden layer, increasing the number of hidden neurons leads to higher
average accuracy

3. More training data implies higher average accuracy

4. Fewer players to classify between implies higher average accuracy

5. Rectified linear unit (ReLU) as activation function implies higher average accuracy compared
to Sigmoid and Softmax

In this section, the average accuracy refers to the average of the accuracies from the three tests on
datasets which are not part of the training set.

Feature Selection

All the ANNs compared in this section are trained with acceleration data in the sensor’s x, y,
z-direction, as well as the rotation velocity around the x-axis, which we call rx. Rotation velocities
around the y- and z-axis are not included as these are not influenced by movements of the handles
because of the position of the sensor as shown in figure 4.4.
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Constructing Artificial Neural Networks

Each ANN compared in this section has 40 input neurons. This is based on the minimum number
of data points in each of the groupings described in section 6.2 which all contains at least ten data
points. Because each data point has four features x, y, z, and rx then we end up with 10 ∗ 4 = 40
inputs. The number of output neurons corresponds to the number of players to classify between.
Each output neuron represents a player. The output value of the neuron represents the confidence
ranging between 0 and 1 that the input to the ANN was performed by the corresponding player.
The output layer of each tested ANN has the Sigmoid activation function to ensure values ranging
between 0 and 1. Given the configuration of the input layer and output layer, we can now test
different configurations of the hidden layer(s) of the ANNs to test if it is possible to classify players
and to test the hypotheses stated in the beginning of section 7.1.2.

Testing Artificial Neural Networks

To test ANNs we need an implementation of the structure and training behind ANNs. For this, we
use the Encog library. We choose this library because it supports the C# programming language and
allows a variety of different models including NNs [64]. The Encog library also supports persisting
a trained model which is useful if a model should be used later or integrated into an embedded
system. The table below shows the configurations of the different models used during the test
including the accuracy of each test. The different configurations are based on the five hypothesis
presented at the beginning of section 7.1.2.

Model Hidden layers Training iterations Has bias node Activation function Neurons Atest1 Atest2 Atest3

1 1 1000 True Sigmoid 5 97% 84% 90%

2 1 1000 True Sigmoid 25 100% 93% 88%

3 1 1000 True Sigmoid 100 100% 95% 98%

4 1 1000 True Sigmoid 250 100% 97% 95%

5 1 1000 True ReLU 250 100% 73% 91%

6 1 1000 True Softmax 250 99% 81% 89%

7 1 1000 True Sigmoid 500 100% 77% 88%

8 2 1000 True Sigmoid 100, 25 100% 67% 89%

9 2 1000 True Sigmoid 25, 100 94% 75% 76%

10 2 1000 True Sigmoid 50, 50 98% 79% 79%

11 2 1000 True Sigmoid 5, 5 98% 67% 85%

Table 7.1: Shows the tested models and their accuracy on each test

Hypothesis 1: Two hidden layers implies higher accuracy than one hidden layer.
To test two hidden layers versus one hidden layer we compare models 1-4, and 7 against models
8-11.
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Figure 7.4: Average accuracy across the three tests for 1-hidden-layered
models 1-4, and 7 compared to 2-hidden-layered models 8-11

Figure 7.4 shows that the 1-hidden-layered models 1-4, and 7 have a higher average accuracy across
the three tests than the 2-hidden-layered models 8-11. Therefore, hypothesis 1: “Two hidden layers
implies higher accuracy than one hidden layer” does not hold true for the models and tests analysed
in this section.

As explained in [52], one hidden layer with non-linear activation functions is enough to approximate
any function, but that in practice having three layers instead of two is often better. Even though
that it is the case that adding depth to a NN often increase prediction accuracy these networks are
also harder to train as new feature representations are created and the relationship between each
of these new features and the output has to be learned [52, 65].

Hypothesis 2: increasing the number of hidden neurons leads to higher average accuracy for
1-layered models.

To test how the number of hidden neurons influences the accuracy we use the models 1-4, and 7.
These models have the same configuration except the number of neurons in the hidden layer.
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Figure 7.5: Average accuracy across the four tests with a varying
number of hidden neurons

Given the results shown in figure 7.5 then the hypothesis: “More hidden neurons implies higher
accuracy for 1-layered models” does not hold because the models with 250 and 500 hidden neurons
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have a lower average accuracy than the model with 100 hidden neurons.

The reason why increasing the number of neurons in a hidden layer does not necessarily increase the
accuracy is that even though we can model more complex functions, we are more likely to overfit
the models [52].

Hypothesis 3: More training data implies higher average accuracy.

To test this hypothesis, we use test 1 and 3. Test 1 and 3 contains data for the same two players.
For each of the two players test 1 has training data from three matches and test 3 has training data
from one match. Given hypothesis 3 we would expect that the models would get a higher accuracy
for test 1 than test 3.
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Figure 7.6: Accuracies from using test 1 (three training matches per
player) and 3 on different models (one training match per player)

Figure 7.6 shows that for each model the accuracy from test 1 is higher than the accuracy from test
3. Because test 1 contains more training data than test 3 then the hypothesis holds true for these
models and tests.

More training data allows the NN to perform a better generalisation of the data as it allows the
NN to more accurately learn which weight values, on many different inputs, gives a low error. For
this reason more training data provides a greater accuracy in our case of training a NN, except if
new data e.g. has a lot of noise.

Hypothesis 4: Fewer players to classify between implies higher average accuracy.

To test this hypothesis, we use test 1 and 2. Test 1 contains data for two players and test 2 contains
data for three players.
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Figure 7.7: Accuracies of test 1 (two players) and test 2 (three players)

Figure 7.7 shows that for each model the accuracy from test 1 is higher than the accuracy from test
2. Because test 2 requires the model to classify between one more player than the two players in
test 3 then the hypothesis holds true for these models and tests.

With fewer possible outputs (as the number of output neurons is equal to the number of players to
classify between) the prediction accuracy naturally increases as there is a greater chance to ‘guess
correctly’. Even for a random prediction method the accuracy will increase the fewer players are
involved.

Hypothesis 5: Rectified linear unit (ReLU) as activation function implies higher average accuracy
compared to Sigmoid and Softmax.

To test this hypothesis, we compare three models with the same configuration except for the acti-
vation function for the hidden layer.
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Figure 7.8: Average accuracies from tests using Sigmoid, Softmax, and
ReLU

Figure 7.8 shows that the model with Sigmoid as activation function has a higher average accuracy
than the models with Softmax and ReLU as the activation function. Based on the three tests then
the model with ReLU as activation function has the lowest accuracy of the three activation func-
tions compared in this test. Therefore, the hypothesis: “Rectified linear unit (ReLU) as activation
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function implies higher average accuracy compared to Sigmoid and Softmax” does not hold true for
these models and tests.

When applying the Softmax activation function in the hidden layer we create a linear relationship
between the neurons in that layer as the outputs of each neuron sum to one [53]. Ideally we want
non-linear activation function in the hidden layers of a NN as we are able to learn problems where
there is a non-linear relationship between input and expected output values [50].

An explanation for ReLU actually having the worst accuracy of the three tested functions might
be because of the dying ReLU problem. As ReLU ranges from 0 to infinity in a linear manner, the
gradient can go towards 0, meaning some weights will not be adjusted. The more neurons that die,
the more passive the network becomes [50]. As mentioned in 5.2.2, this problem can be fixed by
using a modified version of ReLU called Leaky ReLU.

The reason that the Sigmoid activation function is the best performing in our case could be because
we have a shallow NN where it, for our problem, does not encounter ’vanishing gradients’.

Classifying Players Using Artificial Neural Networks

Based on the analysis and test results in this section, we can conclude that the accuracy of ANNs
tested in this section depend on different factors such as the number of layers, neurons, players, and
training data. Table 7.1 shows that it is possible to classify between two players with accuracies
between 94-100% given three matches of training data and accuracies of 76-98% given one match
of training data. Classification between three players in test 2 was done with accuracies between
67-97%. The model with the best average accuracy of 98% across the three tests is model 3 with
1 hidden layer, 100 hidden neurons + bias node, Sigmoid activation function, and 1000 training
iterations.

7.1.3 Recurrent Neural Network Analysis

We will now analyse the performance of different RNN models in correlation to this project. To do
this we will start out with designing a simple RNN model and gradually change it to see how this
affects the performance of the model. This section assumes that the reader has read the chapters:
data collection and data preprocessing explained in chapter 4 and 6, respectively, along with the
ML theory in chapter 5.

Model 1

The first model we will be designing is a simple RNN with an input layer, a LSTM layer, and an
output layer. The connection between layers in this model is illustrated in figure 7.9.

Figure 7.9: Simple LSTM model

As explained in chapter 6, the data from the sensors has been processed into a series of shots where
each data point in the shot contains acceleration in x, y, z, and rotation in x. Furthermore, the
Datahub API will ensure that all shots have at least a length of ten data points. To transform the
data into a series of timesteps that can be used as the recurrent elements in our RNN, one approach
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is to let each data point be the recurrent elements. Therefore the idea is to rescale the input-shape
used for the ANN models in section 7.1.2 from [n, 40] into [n, 10, 4] where n is the number of shots,
10 is the number of timesteps and 4 is the number of features for each timestep.

To implement the LSTM model for this model we use the Keras library [66]. We will not go into
detail regarding how this RNN was implemented, but the code can be found on the public repository
(see reading guide) for those interested.

Table 7.2 shows the performance accuracy of the model in relation to the test suite described in
7.1.1.

Model 1 2-3 neurons 25 neurons

Test 1 99% 98%

Test 2 73% 86%

Test 3 85% 57%

Table 7.2: Accuracy for model version 1. 2-3 neurons is based on the number of labels.

As we can see from the table above the model has a good performance on the three tests and is far
better than any random model (recall that test 2 has three labels while test 1 and 3 have 2). Test
1 and test 3 both have two labels, and it is notable that the accuracy of test 3 is lower than the
accuracy of test 1. Looking closer at the test suites we see that test 3 has two train sets while test
1 has six train sets which indicates that an increase in training data increases the performance of
the RNN. Furthermore, the results in the table show that having 25 neurons in the hidden layer
instead of only a few neurons increases the accuracy which could indicate that the more output
labels the more complex our model has to be. Furthermore, the results of test 3 indicate that the
more complex the NN, the more training data is required to obtain good prediction accuracy.

Model 2

The second RNN model we will be analysing is a RNN with an input layer, two LSTM layers
(stacked LSTM) and an output layer. The model is visualised in figure 7.10

Figure 7.10: A simplified illustration of the layers in the stacked LSTM model

Similarly to adding extra hidden layers in an ANN adds extra levels of abstraction and give new
feature abstractions that can help predict complicated problems, adding extra LSTM modules after
each other (stacked LSTM) can be used to predict more complected sequence predictions. The effect
of adding more depth to a network is explained in the following quote from [67]: "Deep learning
is built around a hypothesis that a deep, hierarchical model can be exponentially more efficient at
representing some functions than a shallow one [...]". Figure 7.10 shows the layout for the stacked
LSTM where the output of the first LSTM layer is sequence data which is fed to the second LSTM
layer.

To test the model we will run two tests one with 25 neurons in the second LSTM layer and one with
250 neurons which will both test the model but also how the model performs when we increase or
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decreases the number of neurons in the second LSTM layer.

Model 2 25 neurons 250 neurons

Test 1 97% 80%

Test 2 89% 71%

Test 3 69% 57%

Table 7.3: Accuracy for model version 2

The results in table 7.3 indicate that for 25 neurons in the HLs, the stacked LSTM model has high
prediction accuracy and that increasing the number of neurons does not increase the performance
of the model, at least not when increasing the neurons by a factor of ten. Furthermore, when
comparing this model to model 1, we see that this model performs better for test 2, but worse
for test 3. Since there are only a few train sets in test 3 this indicates that a larger NN needs
more training data than a smaller NN in order to get appropriate weights for making an accurate
prediction which makes sense.

Model 3

So far we have only considered RNNs where the timesteps used for the LSTM layers were data
points. However, one could imagine that instead of using data points as sequence data we could
instead use sequences of shots as timesteps to predict who is playing. As model 1 is the simplest
RNN considered so far, we will modify the preprosessing of this model to use sequences of shots
instead of sequences of data points. When requesting data from the Datahub API we receive a
number of shots where each shot has at least ten data points. Similar to model 1, we will only look
at the ten first data points giving each shot a total of 40 features. Now we have to turn our data
into sequences of data with t timesteps. We can do so by choosing a window size, n, and then slice
the original array of shots into segments of size n by taking the first n shots and grouping them into
a segment then the next n shots and so on until the remaining elements are less than n. However,
by doing so we assume that each window starts at a specific position, but what we really want is for
our model to be able to pick up at any position and make an accurate prediction. For this reason,
we will be using rolling windows instead where we given a start index, i, first will take the elements
from i to i+ n then from i+ 1 to i+ 1 + n and so forth.

Model 3 window size 3 window size 10

Test 1 52% 50%

Test 2 33% 35%

Test 3 54% 51%

Table 7.4: Accuracy for model version 3

As seen in table 7.4, the model seems to perform poorly, independent of the tested window sizes,
indicating that the RNN fails to capture the relationship between sequences of shots (if there is
any). This means that if a RNN model is to be used, the data points which a shot consists of seem
to be the best thing to use as the recurrent elements.
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Visualising the Training of Models

In this section, we will visualise the training history for some of the previously described models in
order to determine why some models perform poorly and others have high accuracy. Figure 7.11
shows the training of model 3 with windows size 10 on test 1. As explained earlier, the validation
set is a subset of the training set and as we can see, the accuracy for the validation set does not
improve as the number of epochs (training iterations) increases which indicates that the model is
being underfitted. Because the model is underfitted it fails to describe the relationship between
input and output of the model which explains the poor performance of the model.

Figure 7.11: Training history for model 3 with windows size 10 on test 1 showing the models
accuracy on training data and validation data for each training iteration (epoch)

On the other hand, we saw that model 1 had high accuracy for test 1. Figure 7.12 shows the
training history for model 1 on test 1 and as we can see this model is far better, in fact, we see that
the accuracy of the validation set and test set seem to follow closely. However, we also see that
after 40 epochs the accuracy starts to differ more and more which indicates that the model is being
slightly overfitted. The accuracy is still close and the model performs well on test 1 as seen earlier.
Currently we try to avoid overfitting by using an early stopping function in our models where the
model will stop training if it has not improved within ten epochs. To improve this we could, for
instance, change the stopping criteria used or introduce dropout layers as explained in the Keras
documentation [66]. However, this comes with the risk that the model will stop too early.
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Figure 7.12: Training history for model 1 on test 1 showing the models accuracy on training data
and validation data for each training iteration (epoch)

Discussing the RNN Models

The analysis indicates that it is possible for RNN models to have high prediction accuracy when
identifying table football players based on movements. Furthermore, the analysis indicates that
using data points as the recurrent elements in the RNN yields a better performance than using
sequences of shots. As illustrated in table 7.5, it seems that using a stacked LSTM model generally
has better performance than model 1, but it is clear that this model requires more training data
than having a single LSTM layer. In fact, assuming that each weight requires 8 bytes of memory,
a model with 25 neurons requires a total of 3052 weights or 24kB of memory and a stacked LSTM
with 25 neurons in each LSTM module requires a total of 8152 weights which is approximately
64kB of memory assuming each weight is stored as 8 bytes.
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Model Hidden
layers

Max
Training
iterations

Window
size

Has bias
nodes

Activation Neurons Atest1 Atest2 Atest3

1 1 1000 10 True ReLU +
Softmax

nr. of labels 99% 73% 85%

1 1 1000 10 True ReLU +
Softmax

25 98% 86% 57%

2 1 1000 10 True ReLU +
Softmax

25 97% 89% 69%

2 1 1000 10 True ReLU +
Softmax

250 80% 71% 57%

3 1 1000 3 True ReLU +
Softmax

nr. of labels 52% 33% 54%

3 1 1000 10 True ReLU +
Softmax

nr. of labels 50% 35% 51%

Table 7.5: Shows the tested models and their accuracy on each test

7.2 Choice of Neural Network Model

In this section we will choose a specific ML model to use in the remainder of the project, based on
the analysis in section 7.1.3 and 7.1.2 .

In section 7.1.2 it was concluded that the performance of ANN depends on many factors such
as training data, activation function, and the structure of the ANN; e.g. how deep the network
is and the number of neurons in each layer. Despite this, the analysis concluded that the best-
tested model was the ANN model 3 with 100 hidden neurons + bias node and a Sigmoid activation
function. Assuming that each weight requires 8 bytes of memory this model requires at least
41 ∗ 100 + 101 ∗ 2 ≈ 34kB memory. In the RNN analysis in section 7.1.3 it was found that having a
stacked LSTM network with 25 neurons in the HLs had the best overall performance of the tested
RNN models, but that it required a total of approximately 64kB of memory.

Table 7.2 shows the average predictions accuracy and memory consumption of the tested ANN and
RNN models with the best accuracy on the performed tests. As it is shown, the ANN model has
the highest prediction accuracy relative to the test suit. Another advantage of the ANN model over
the RNN is that it requires less memory and that the model is simpler to implement than a LSTM
model. Even though we cannot conclude that the ANN model, in general, has better performance
than the RNN model, since the results depend on the chosen test suits, the findings in section 7.1.2
and 7.1.3 indicate that an ANN model with 100 hidden neurons and Sigmoid as activation function
works well for identifying people based on movements.

Furthermore, the ANN model is simple to implement, relative to a RNN model, and this, in addition
to consuming less memory are the reasons why we choose ANN.
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Accuracy Memory consumption

RNN 85% ≈ 64kB

ANN 98% ≈ 34kB

Table 7.6: Table comparing the ideal RNN and ANN models. The memory consumption is based
on the number of weights in the two networks where each weight is set to use 8 bytes of memory
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Embedded Classification

From section 5.2.4 we know that we can classify between two players using an ANN with an input
layer of 40 neurons, a hidden layer of 100 neurons, and an output layer of 2 neurons. In this section,
we will describe how we can implement a function which evaluates such a model in order to reach
the second milestone of this project: The embedded system must be able to classify which of two
players is playing based on a pre-trained model.

8.1 Overview of Milestone II

For milestone 2 we introduce a new architecture. An overview of which can be seen in figure 8.1.

Node

Node

RelayDataHub
UDPHTTP

Internet Relay Access Point

Average and display output Send output to DataHub

Collect data, process data, 
and Evaluate ANN

Collect data, process data, 
and Evaluate ANN

Figure 8.1: Overview of the system to be developed in the second milestone

We now want to run a NN on a NodeMCU and send it directly to the DataHub which stores and
visualises the data through the relay. This means that the nodes can focus on collecting data and
evaluate the network, while the relay focuses on talking to the server and collecting the results
from the nodes. This is necessary since the HTTP requests to the DataHub are pretty slow since
it uses TCP and works through the internet. This causes the relay to hang for up to hundreds of
milliseconds at a time, which is unacceptable for the nodes. If the relay receives data in this time it
will simply be put into a buffer and processed later. The nodes can then communicate to the relay
over a private network using UDP which is fast and somewhat reliable, since the private network
does not have any interference on the network itself.
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8.2 Implementing Embedded Classification

In this section, we will describe how to implement embedded classification on the NodeMCU and
show the implementation details for evaluating a trained ANN. To perform classification, we use
a pre-trained model from the Encog library similar to the model selected in section 5.2.4. Figures
8.2 and 8.3 describe the software implementation of milestone 2. In figure 8.2, the main loop is
shown. If input is ready, we evaluate the ANN with the input received and send the result of the
evaluation as a UDP packet. Every 2ms this loop is interrupted to call the data collection method,
which sets inputReady to true. This method is shown in figure 8.3.

Figure 8.2: Flowchart of actions repeated in the main loop

Each 2ms, we measure data collected by the sensors. The data measured is then converted to a
data point which is added to buffer1. When this buffer contains 20 data points, we take the average
of these values and clear the buffer. The state measuring movement refers to a boolean value. If
this value is set to true, which means we are actively logging shot information, we add this average
data point to buffer2. When buffer2 contains ten elements, we check if the absolute value for the
last ten data averaged data points is below 0.5, as this means we have seen enough movement with
a rotational acceleration below a given threshold, meaning we classify the shot as finished. When
a shot is finished, we send it to an input variable and reset buffer2.
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Figure 8.3: Flowchart of data collection and processing performed each 2ms

Evaluate ANN on Embedded To represent the data gathered from the sensors we have
created a data point struct that contains fields for the three-dimensional acceleration data gath-
ered by the accelerometer and for the three-dimensional rotation data gathered by the gyroscope.
Furthermore, data structures have been created for representing nodes, layers, NN, groups of data
points, and to store the result of the ANN.

To make the embedded classification a model is trained on a separate system and the weights and
bias nodes of the trained model are stored and loaded into the memory on the embedded system.
The method EvaluateNetwork in listing 8.1 receives a group of data points. In line 16 - 21 in listing
8.1 the input layer is created producing a total of 40 input neurons (4*10) in the input layer. In line
24 - 29 we calculate the output of each neuron which is our implementation of equation 5.1. The
way we implement it is by looping through each layer, except the last, and for each neuron in this
layer we calculate the neurons contribution (weighted input) to each neuron in the next layer which
can be seen on line 27 in 8.1. After the output of each neuron in a layer has been calculated the
Sigmoid activation function is applied to the output of each of the neurons and the output values
in the last layer correspond to the output of the NN.

1 networkResult EvaluateNetwork(group g) {
2 // fill input layer
3 layer* l;
4 node* current;
5 node* next;
6 int nextNodeIndex;
7
8 // init node values to zero
9 for(l = ann.layers; l < ann.layers + ann.n_layers; l++) {
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10 for(current = l->nodes; current < l->nodes+l->n_nodes; current ++) {
11 current ->val = 0;
12 }
13 }
14
15 l = ann.layers;
16 for(int i = 0; i < 10; i++) {
17 l->nodes[i*4 + 0].val = g.datapoints[i].X;
18 l->nodes[i*4 + 1].val = g.datapoints[i].Y;
19 l->nodes[i*4 + 2].val = g.datapoints[i].Z;
20 l->nodes[i*4 + 3].val = g.datapoints[i].RX;
21 }
22
23 // loop through layers
24 for(l = ann.layers; l < ann.layers + ann.n_layers -1; l++) {
25 for(current = l->nodes; current < l->nodes+l->n_nodes; current ++) {
26 for(nextNodeIndex = 0, next = (l+1) ->nodes; nextNodeIndex < (l+1)

↪→ ->n_nodes; nextNodeIndex ++, next ++) {
27 next ->val += current ->val*current ->weights[nextNodeIndex ];
28 }
29 }
30 for(nextNodeIndex = 0, next = (l+1) ->nodes; nextNodeIndex < (l+1) ->

↪→ n_nodes; nextNodeIndex ++, next ++) {
31 next ->val += l->bias.weights[nextNodeIndex ];
32 next ->val = sigmoid(next ->val);
33 }
34 }
35
36 // copy final layer node values to result vector
37 l = ann.layers+ann.n_layers -1;
38 for(int i = 0; i < l->n_nodes; i++) {
39 ann.lastResult.results[i] = l->nodes[i].val;
40 }
41
42 return ann.lastResult;
43 }

Listing 8.1: The EvaluateNetwork function implemented on the embedded system

8.3 Test of Milestone II

In the second milestone, we train a given model using the Encog framework [64]. We want to
test that our implementation of the NN and the Encog framework will give similar results for equal
inputs. To test this, we will feed data that was collected in milestone I, to both the Encog framework
and the embedded system. The same model is then used for classification on both a computer using
the Encog framework for classification like in milestone I (see section 4.6) and it is also transferred
to the microcontroller.
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Purpose The purpose is to test if the logic used to evaluate a NN on the embedded system is
working correctly by comparing inputs and outputs of our implementation to that of the Encog
library. We also want to test if single precision floats will give the same results as using double
precision down to the precision of 1/1000th. This is done since floats use 32 bits less than doubles
and since the majority of used RAM on the ESP8266 is taken up by values of type double, this
will save us a lot of memory and allow us to use bigger networks or use other memory-demanding
features.

Test Setup The test setup consists of a PC and a ESP8266, connected with a USB-cable to
allow serial communication.

Test Procedure

1. Construct a NN model using Encog with 40 input neurons, 100 hidden neurons, and 2 output
neurons.

2. Construct a test dataset containing sets of 40 double precision floating point numbers.

3. Evaluate the test dataset on the ESP8266 with the constructed model using single precision
floats

4. Evaluate the test dataset on the ESP8266 with the constructed model using double precision
floats

5. Evaluate the test dataset in Encog with the constructed model

6. Save the output of each test to a file

Test Result The results of the test are shown in table 8.1 with each system in a column and
nine results from each system running the same sensor-output. As we can see, using doubles is
practically as accurate as Encog, since the errors are likely just rounding errors. We then repeated
the test using floats instead of doubles on the ESP8266 and the results became more inaccurate,
but still no more than than a ±10−6 difference, which is still accurate enough for our purposes and
since we are primarily interested in which output neuron is the largest by a distinguishable amount
(who the network thinks is playing), this is of no concern.

Encog output ESP8266 using Doubles ESP8266 using Floats

0.534176096421199 0.534176096421199 0.534176111221314

0.680407498449225 0.680407498449226 0.680407524108887

0.827025915406907 0.827025915406907 0.827025949954987

0.238695802160103 0.238695802160103 0.238695859909058

0.646675655305976 0.646675655305976 0.646675705909729

0.29626519071482 0.296265190714820 0.296265065670013

0.906369857570365 0.906369857570365 0.906369864940643

0.0610164419409884 0.0610164419409880 0.061016447842121

0.998362617607717 0.998362617607717 0.998362600803375

Table 8.1: A subset of the results of the test using a NN with 40 input neurons, 100 hidden layes .
Differences are marked in bold

61



Chapter 8. Embedded Classification 8.3. Test of Milestone II

Test Discussion The test results in table 8.1 shows that the embedded system developed to
solve milestone II is able to produce similar prediction results as the Encog library which was used
in 7.1.2 to analyse different ANN models and in this milestone to train the ANN. Furthermore, the
test shows that it is possible to decrease the precision of variables used for weights from double-
precision to single-precision with only a small decrease in accuracy which means that in the next
milestone we can decrease the memory used by the network with 50% which enables us to have a
more complex NN or store more data on the ESP8266.
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Milestone 3
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Chapter 9

Embedded Learning

In this chapter, we will describe how we programmed an embedded system for training a NN
and further used this trained NN to predict who is playing. To do this we will first describe the
different components that constitute the solution for the third and final milestone of our product
for identifying people based on movements in table football. Hereafter, we will describe how they
interact with each other to make embedded learning and prediction. We then conduct a memory
analysis of the memory required for implementing the chosen ANN model in order to determine if
the ANN fits and how much memory we have left for local variables. Finally, we will describe the
implementation of stochastic gradient decent to update the weights of the neural network.

9.1 Overview of Milestone III

In this section, the changes from milestone 2, going into milestone 3, will be described. The overview
of milestone 2 can be seen in chapter 8. As seen in figure 9.1, the nodes are no longer responsible for
evaluating the ANN. Instead, their only purpose is to send individual shots to the relay. The relay
now has the responsibility to both train and evaluate the network. The relay can be configured
by the DataHub to either train or evaluate the network, by choosing a label for each node. This
means that future data the relay receives from those nodes will be used to train the NN towards
that label. If no label is selected for the nodes the data which the relay receives from the sensors
will simply be evaluated with the current model and the output sent on to the DataHub.

Node

Node

RelayDataHub
UDPHTTP

Internet Relay Access Point

Average and display output Evaluate ANN, train ANN, 
and send output to DataHub

Collect and process data

Collect and process data

Figure 9.1: Overview of the system to be developed in the third milestone
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9.2 Memory Analysis

Memory shortage is a concern since the device will crash if we run out of memory. On the other
hand, if there is memory left over, we can use this to increase the size of our data buffers. We will
do some calculations to ensure that we do not exceed the memory limit of the ESP8266.

The ESP8266 has 81920 bytes of user data RAM [68] of which only a subset is usable as dynamic
heap memory. To determine how much heap we have available for our program, we can run
ESP.getfreeheap(), which returns how many bytes are left in the heap for us to use. This function
returns 46864 bytes when run as the first thing in an otherwise empty program, which means that
we have about 46.6KB memory for our heap, in which we need to store a neural network and a
set of input data for training and verification of the network along with other global and static
variables.

In table 9.1 we have listed the major memory uses in the relay and calculated our expected heap
usage and found that we should have around 11 KB left when the cache is full. An example of this
is our network, which has 40 input nodes, 100 hidden nodes and two output nodes along with a
couple of bias nodes, we need (40 + 1) · 100 + (100 + 1) · 2 = 4302 floats to represent the weights,
which equals to 17208 bytes.

We found that malloc has a 4 byte overhead[69] each time it is invoked, which we have included in
our calculations.

In figure 9.6 we can see there’s a little under 10KB heap left when the cache is full, which means
our calculation is not far off. There is, however, 1.3 KB we cannot account for. We assume this is
because some libraries like the network are using some heap, which we cannot control along with
some small variables which we have not included in our calculation.

Memory Used for... Heap usage in bytes

Node Input-buffer 3000

Dathub Output-buffer 1024

NN-Weights 17208

NN-nodes 2272

NN-layers 84

Training-data array 960

Training-data 9600

Shuffle buffer 640

Malloc overhead 752

RAM available 46864

Free heap 11324

Table 9.1: Heap usage of the relay

9.3 Implementing Embedded Learning

In figure 9.1 we presented an overview of the components used for this milestone. We will now look
closer at the relay node to describe how we implemented learning on an embedded system.
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Figure 9.2 shows the flow of execution in the relay. First, a setup function is called where the NN
structure is created and WiFi is set up. Then the loop is entered where we first check if there is new
data from one of the sensors connected to the relay’s network. If there is new data the data is read
from the UDP package. If no label is set for the node then it means the NN should be evaluated.
To do this a forward parse of the NN is conducted and the output of the node in the last layer is
saved in an output buffer. If the labels are set, the shots are inserted into the buffer created for
that label. When all buffers have been filled the NN is trained. Lastly, the predictions held in the
output buffer are sent to the server and displayed on the monitor page and the loop is repeated.

Figure 9.2: Flow diagram for relay node

To train the NN on the embedded platform we use stochastic gradient descent. Listing 9.1 shows
the code for implementing stochastic gradient descent on an embedded system. The theory behind
training a NN is described in section 5.3.1.

1 networkResult trainNetwork(network* n, example* examples , int
↪→ n_examples){

2 networkResult res;
3 // for each example
4 for(int i = 0; i < n_examples; i++) {
5 // feed it though the network
6 res = EvaluateNetwork(n, examples[i].input);
7
8 // calculate squared errors on the output
9 _calculateOutputError(n, examples[i]. output);

10
11 // back propogate error
12 _backpropogateErrorValues(n);
13
14 // update weights based on errors
15 _updateWeights(n, LEARNING_RATE);
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16 }
17
18 return res;
19 }

Listing 9.1: Source code for training the network on the embedded system

During training of the NN, we use a validation set to find out when the error has converged. We do
this by splitting the data into a test set and a validation set and then calculate the mean squared
error for the validation set before each training. If the training does not improve within n number
of steps by at least some constant value then training is stopped and the data for each label is
flushed from the buffers. If the NN is not converged we keep training and before each training, the
training data is shuffled to avoid creating a bias in the training as explained in [70].

9.4 Interface for Embedded System

The DataHub Monitor page is the confidence-communication page of the DataHub. It has two
functions. If the label is seen on the top left of each chart in figure 9.3 is set to a player, it will
communicate to the relay that it should use the sensor data to train for this specific player and
the chart will not update. If the label is set to ‘none’, this indicates to the relay that it should
start predicting who is playing between the labels associated with the sensor. The chart will then
begin live-updating with the average value of the confidences for each player. Whether to perform
training on a person or to predict who is playing is communicated from the DataHub back to the
relay through an API call. This call includes information about the MAC address and could e.g.
look like what is shown in listing 9.2. This string communicates that there are two sensors (as we
have one sensor for each MAC address), on the first sensor, player1 currently has a confidence of
0.2 and player2 has a confidence of 0.9.

"2C3AE833EC15#Player1 :0.2; Player2 :0.9;2 C3AE8340553 \# Player1 :0.2;
↪→ Player3 :0.4;"

Listing 9.2: Example of how MAC addresses are associated with labels and confidences
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Figure 9.3: Picture of the Monitor page of the DataHub

9.5 Test of Milestone III

In the third prediction, we assume that we have already tested functionality from the two first
milestones in 4.6 and 8.3 respectively. In addition to having this functionality tested, in this
milestone, we also need to test that the embedded system is able to train the weights of the NN so
the NN can be used to identify people based on movements in table football.

Test Setup Figure 9.4 shows the test setup used for testing the embedded system implemented
for the third and final milestone (see figure 9.1 for hardware overview for milestone 3). As seen in
the figure two nodes are attached to the frontmost handles of each team. Furthermore, the nodes
are attached such that the sensors points in opposite direction of each other. The Relay node is
connected to the computer and outputs test information such as input and out values of the ANN
which is sent serially to the laptop that writes this to a log file. Furthermore, the laptop screen is
recorded during an entire test including training where the DataHub monitor page and the serial
output is displayed.
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Figure 9.4: Test setup milestone 3

Test Procedure The test is performed with the following test procedure:

1. Attach node 1 to the blue team’s handle and node 2 to the red team’s handle (see test setup
image)

2. Power on the relay, node 1, and node 2

3. Set current label of node 1 to player 1

4. Set current label of node 2 to player 2

5. Players start playing until 30 movements have been collected for each player

6. Wait until ANN training session is done (train:done appears in the console)

7. Set current label of node 1 to player 2

8. Set current label of node 2 to player 1

9. Players switch side and plays until 30 movements have been collected for each player

10. Wait until ANN training session is done (train:done appears in the console)

11. The DataHub monitor page is cleared and labels are set to none

12. Play a match to ten goals where each shot is classified

13. Reset data at the DataHub monitor page

14. Players switch side and play a match to ten goals where each shot is classified

15. Save Results and clear Datahub monitor page

16. Power off Relay, node 1 and node 2
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Test Result A total of 3 tests were performed among three project members of the group
where a test was conducted for each possible combination of the three project members playing
against each other. Table 9.2 shows the group members corresponding to Player1 and Player2 of
each test as well as the start time for the two matches played in each test.

Test Player 1 Player 2 Start time (Match 1) Start time (Match 2)

Test 1 Anton Morten 730963ms 1538426ms

Test 2 Anton Ibsen 696589ms 1385825ms

Test 3 Ibsen Morten 685264ms 1079378ms

Table 9.2: The group members representing player 1 and player 2 during the three tests and the
starting times for the two matches played corresponding to the time in the relay log which can be
found in electronic appendix.

The results of the first and second match (step 12 and 14 in the test procedure) are shown for each
test in table 9.3.

Case Test Match Team Player 1 Player 2 Classified Actual

1 Test 1 Match 1 Blue 0,45 0,55 Player 2 Player 2

2 Test 1 Match 1 Red 0,54 0,43 Player 1 Player 1

3 Test 1 Match 2 Blue 0,56 0,43 Player 1 Player 1

4 Test 1 Match 2 Red 0,45 0,60 Player 2 Player 2

5 Test 2 Match 1 Blue 0,38 0,61 Player 2 Player 2

6 Test 2 Match 1 Red 0,60 0,41 Player 1 Player 1

7 Test 2 Match 2 Blue 0,53 0,48 Player 1 Player 1

8 Test 2 Match 2 Red 0,45 0,55 Player 2 Player 2

9 Test 3 Match 1 Blue 0,48 0,57 Player 2 Player 2

10 Test 3 Match 1 Red 0,55 0,46 Player 1 Player 1

11 Test 3 Match 2 Blue 0,64 0,46 Player 1 Player 1

12 Test 3 Match 2 Red 0,41 0,66 Player 2 Player 2

Table 9.3: The results from the three tests of the third milestone. The table shows for each sensor
(one for each team) the average output of the embedded ANN given the data from the corresponding
match in each of the three tests as well as the classified player (the player with the highest average
output) and the actual player

To illustrate how the average is derived from individual classifications of handle movements we can
illustrate the ANN output for each of the movements in case 12 of table 9.3 as shown in figure 9.5.
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Figure 9.5: ANN output for each movement performed by player 2 and detected by the sensor
attached to the red team’s handle in the second match of test 3. The two lines show the current
average ANN output for player 1 and player 2 since the beginning of the match. Data is parsed
from the relay log file which can be found in electronic appendix.

Heap size during test 1, 2 ,3 Furthermore we made a test to ensure that we do not
run out of heap size which can be seen in figure 9.6, where we can see that at its lowest point the
ESP8266 has just under 10 KB of memory on the heap left which is not far of our rough calculation
of 12 KB.
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Figure 9.6: Heap size during test 1, test 2, and test 3 (see section 9.5)
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Test Discussion As seen in table 9.3, the player of each match was classified correctly for
all 12 cases based on the average output of the ANN. This shows that the model trained on the
embedded system is able to evaluate data for individual movements to output values for player
1 and player 2 such that the player with the highest average output value of the entire match
corresponds to the actual player. Even though the average output of the ANN classifies the correct
player, there might be individual movements which are classified wrong. This can be seen in figure
9.5 where some movements performed by player 2 are classified as player 1 (Blue dot is above the
orange dot at a given point in time). A reason for this can be that when the model is trained with
30 movements from each player at each side of the table then not all characteristics of each player’s
movements are captured in the model. Another reason can be that player 2 performs movements
that are similar to the movements that the model was trained to classify as player 1. As shown
in the analysis of ANNs in section 7.1.2, adding more players to classify between can decrease the
accuracy of the model. In this test, we have only tested classification between two players at a
time. This means that the probability of classifying the correct player by randomly selecting one
of the two players is 0.5. This would be a problem if we only got a single test case as we would not
be able to conclude if the model is performing better than random. Because we have 12 test cases
then the probability that the model would select the correct player randomly in all twelve cases
is 0.512 ≈ 0.000244. Because this is very unlikely then we conclude that the model is performing
better than random.
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Discussion

10.1 General Concerns

In chapter 7 we analysed different ANN and RNN models based on data collected using the embed-
ded system created in milestone 1. During this analysis, the ANN and RNN models were imple-
mented using two different ML libraries Encog and Keras, respectively. It is uncertain whether using
different libraries would have impacted the performance of the different ML models. Furthermore,
during the analysis of the ML models, we only considered a subset of possible NN structures and
hyper-parameters as the purpose of the ML model was not to find an optimal model, but rather find
a model that had high performance on the test suite, and was simple enough to implement, given
the time frame available for this project, while also taking into account that the memory usage of
the NN should be able to fit on an embedded system with low memory. It has also become clear
for the project group that the results of testing different ML models, to some degree, depend on
the test suite they are tested against. For this reason, it can not be concluded that ANNs is more
suitable models for this particular kind of problem than RNN models as further internal testing has
shown that, over multiple test suits, the prediction accuracies of our best RNN model and ANN
model are similar. However, the findings of chapter 7 still hold, as the ANN models are simpler to
implement than RNN models and require less memory. Another concern is that we do not know
how well the chosen ANN model scales beyond three labels, as we have not had prioritised to spend
time on collecting, testing, and analysing data with more than three classes. For this reason, it is,
therefore, possible that a deeper NN would be more sufficient for classifying amongst more than
three classes. It is also uncertain how well the model works when used to predict over more than one
football match as it is possible that players gradually change playstyle. However, one can address
this issue by retraining the NN, which is possible with the current solution.

10.2 Data Collection

In section 4.6 we tested the embedded system’s requirements specified by milestone 1 for its ability
to collect data, and concluded that several data points were lost during data collection and trans-
mission, which could be a caused by the use of UDP. In iteration 2 and 3, the nodes responsible for
collecting data were changed, so that they no longer send each data point individually, but instead
grouped the data points into shots, and sent each of those as a single package to the relay node.
This means that for the solution for milestone 2 and 3, data points contained within a shot is only
lost during data transmission if the entire shot is lost, as the entire shot is sent as one package.
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However, this is from a ML perspective preferable, as we do not lose data within a shot used for
learning and predictions. Furthermore, losing a shot will not affect the training of the NN as the
implemented ANN does not take into account the sequence or order in which shots appear. As
such the result of losing shots is that it will take longer to fill the buffer during training, and during
classification it would just mean that the particular shot, which was lost, would not contribute to
the overall prediction result.

For data collection, we chose to use MPU-6050 which is a chip with accelerometer and gyroscope
sensors. This choice of sensors means that we are only able to gather information about the
translation and rotation of handles and not able to get the position of handles without knowing the
start position and orientation of the sensors. It is uncertain how the use of other types of sensors
would have affected the findings in this project and also uncertain whether or not it would have
been better to use multiple types of sensors for measuring the same data. The reason the project
group did not consider the use of other sensors is that we were able to determine that it was possible
using the MPU-6050 to isolate movement data from the data, while also being able to make NN
models, which could use this data to predict, with high accuracy, who was playing.

10.3 Data Processing

In chapter 6 we described how the collected data was processed into features that could be used
for ML models. During the pre-processing, we down-scaled the collected data by averaging over
20 data points. However, after analysing the frequency domain of the data in section 4.5, we
concluded, by using the Nyquist-Shannon sampling theorem; taking the average of 20 data points
could mean that some information of a shot would be lost and that we probably should have chosen
to average over fewer data points. However, the reason for not changing this approach, is that it
was discovered after the project group already had analysed and determined, that it was possible
to use the current approach of averaging over 20 data points, and create models that could, with a
high accuracy, identify among two or three persons playing table football. During data processing
data were also grouped into shots based on an algorithm developed by the project group which is
described in chapter 6. However, it is likely that this algorithm does not capture all shots or that it
captures information about other movements than ’shots’. Another approach we could have taken
was to also include data about movements, i.e. not only take data points where the rotation exceeds
some threshold, but also take into account movements without rotation. Furthermore, the current
approach only consider the first ten average data points of each shot and use this data to make a
classification meaning that if a shot contains more than ten average data points, this information
is not used. The reason for choosing this approach is that NN models need a fixed number of
input features, however, one could instead have used other approaches for making features, where
all the data points would have been taken into account, like using statistic features. However, we
are unsure if this approach would have been better for the final and chosen model implemented in
chapter 9.

10.4 Embedded Learning and Classification

In chapter 9 we implemented an ANN on an embedded system for learning and classifying people,
based on movements in table football. The chosen model is based on the NN models analysed in
chapter 7 and tries to follow the same approach, used for these models. However, due to memory
limitations on the embedded system, we had to limit the amount of data that could be stored in
memory, during training. To accommodate for this, we designed the training of the NN, such that
it is possible to train the NN multiple times with new data. Furthermore, we chose to use the
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Sigmoid instead of using a combination of ReLU and Softmax for activation function. The reason
for this is that we analysed that the Sigmoid function worked well for our problem.

As described in section 9.5 we tested the third and final milestone of the embedded system on every
combination of three project members, and during each test the model had to classify between two
of the group members. The test showed, that the system was able to correctly identify amongst the
project members in each of the three tests, giving a total of 12 correctly predicted cases. However,
ideally we would prefer to test the system amongst more than two players at a given time, as it is
unsure how well the current solution works for more than two players. Additional tests were not
conducted due to time constraints as it currently takes a lot of time to set up the embedded system,
analyse the results, and document it.
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Conclusion

In this project we have, based on analysis of different ML models, designed and implemented an
embedded system for training an ANN with the purpose of identifying players amongst a set of two
players playing table football. This system was implemented as an answer to the problem:

Problem statement How can an embedded system be implemented to identify individuals based
on the movement of handles in a table football game using machine learning?

In order to answer the problem statement, we devised four research questions (see chapter 3). We
will now describe how we solved each of these research questions by answering them separately
before making the final conclusion.

Research question 1 How can we collect data about movements of handles in a table football
game?

We designed an embedded system for collecting data in chapter 4. The system consists of two 3D
printed boxes which each contain batteries, a NodeMCU, and a MPU-6050. Every two milliseconds,
the NodeMCU processor reads acceleration and rotation of the three axes: x,y, and z, and groups
this data into what we call a data point. Based on the gathered data points, the NodeMCU is
responsible for grouping the data points into shots and sending the shots via UDP to another
NodeMCU module (the relay). When collecting data, each of these boxes were attached to the
football table as described in the test setup in section 9.5.

Research question 2 How can data be processed to use it for training machine learning models
to identify people playing table football?

This research question is answered in chapter 6, by first down-scaling the data, by taking an average
over 20 data points and then grouping the down-scaled data into shots, based on a threshold value
for the rotation in the x-axis. For each shot, the first ten data points are extracted, and from each
data point the acceleration in x, y, and z and the rotation in x is extracted, giving a total of 40
features. These features are then used for training a ML model for classifying people, based on
movements in table football.
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Chapter 11. Conclusion

Research question 3 Which machine learning models can be used to identify players?

To answer this research question we designed and tested different machine learning models in chapter
7, and found that an ANN model with 40 input neurons, a hidden layer with 100 neurons, bias
nodes, Sigmoid activation function, can correctly classify all 12 cases based on the average output
of the ANN for a given match. During classification of shots then some of these may be classified
wrong, but the overall average is correct in the 12 cases seen in table 9.3.

Research question 4 How can such a machine learning model be implemented on an embedded
system?

We answered this final research question by creating an embedded system consisting of two data
collection nodes, one relay node, and a front-end web application with an API (DataHub). The
data collection node gathers data from the gyroscope and accelerometer sensor, groups the data
into shots, and sends the shots to a relay node. On the relay node, we implemented the previously
described ANN model and trained the model by storing shots for each player in separate buffers.
When the buffers are filled, the shots are separated into training and validation sets, and then the
ANN is trained on the training set until the error on the validation set does not drop by at least
some constant value for five training iterations. The buffers are then flushed, and the process is
started over until an API response from the DataHub indicates, that training should stop. When
training has been stopped, the relay node will make a forward pass of the trained ANN for each
shot it receives from the data collection nodes. Each forward pass will yield an output value for
each node in the output layer (one output neuron for each player). The output values of each
forward pass is sent to the DataHub via HTTP, and will also contain the MAC address for the data
collection node from which the data was collected. The DataHub then keeps track of which data
belongs to which data collection node, and accumulates and averages the data for each node and
displays the results for each node on the DataHub monitor page.

As discussed in chapter 10, we have developed an embedded system for identifying people based
on movements. The system has been tested on three project members of the group and was able
to accurately identify amongst the three members in all of the 12 cases. The probability for a
random model to gain the same results is 0.512, which is approximately 0.00024 or 0.024%, making
it unlikely that these results were made by a random model.

We chose to implement the ML model on the embedded system as a challenge to ourselves, as it
would give us the opportunity to learn how to implement an ANN from scratch, beyond what could
simply have been learned using libraries.

In conclusion, we have designed and implemented an embedded system for classifying amongst two
players playing football table. The embedded system is able to train and predict players based on
movements, and the prediction results can be displayed live on the DataHub monitor page. We
can, therefore, confirm that it is possible to classify between people based on their movements in
table football.
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