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Abstract:

A plethora of techniques exist for detecting and
correcting errors that can occur in a CPU when
it is subjected to a bitflip. In this paper we re-
view a number of such techniques and attempt
to categorise them based on the type of errors
that can occur. We do based on a formal def-
inition of the errors, a so-called fault model,
which is defined on the basis of a small lan-
guage, TinyARM, with well defined semantics
that aim to model a simplified ARM processor.
We find that it is difficult to compare them like
this, because the techniques are not designed
for TinyARM and because they are differ on
too many other areas than fault models alone.
Regardless, we conclude that if new techniques
were developed around a common framework it
would be beneficial for comparing them. Addi-
tionally, we exemplify how a technique can be
formalised through the help of a language that
was designed for another technique. We do so
by using structured formal proofs to strengthen
the argumentation of Moro et al., 2014 while
also showing how this structured approach can
reduce the risk of making mistakes by show-
ing how a single instruction was classified er-
roneously by the original authors.
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1 Introduction

1 Introduction

Protecting various microprocessors against a Single Event Upset (SEU), colloquially known as a
bitflip, has been the focus of much research over the years. Initially, the focus was on systems for use
in space and high altitude aircraft, as those environments contain a higher number of cosmic rays
compared to ground level, which significantly increases the probability of one inducing a transient
fault, i.e. a fault that does not permanently damage the hardware (Tront, Armstrong, and Oak,
1985). More recently, the search for increases in processor performance has led to ever smaller
transistors using lower voltages. Much like putting hardware in space, increasing the density of its
internals carries with it a greater risk of transient faults (Shivakumar et al., 2002; Borkar, 2005).

The research into protecting against SEUs is as varied as the types of SEUs: depending on where in
a microprocessor an SEU occurs, it can have vastly different effects on a running program. Consider,
for example, the following piece of ARM-like assembly code, written in TinyARM, a language we
define formally in this paper:

1 ldr r1, 0xBAADC0DE ; move entered PIN from memory to r1
2 mov r2, 3295 ; move correct code into r2
3 cmp r1, r2 ; compare the values in r1 and r2
4 b_ne wrongPin ; branch to wrongPin if values differed

Imagine a machine with memory mapped input/output, where a connected keypad stores its input
at the memory address 0xBAADC0DE. In the code above, the input is moved into register r1 and the
hard-coded correct PIN 3295 is moved to register r2. When the two are compared, they change
the values of control flags depending on the result of the comparison. In the fourth line control is
transferred to a different region of code if the zero flag is not set, i.e. the two values were not equal.
Now consider the different ways a single bit being flipped could lead to an erroneous result, with
some of them even permitting access without entering the correct PIN. If an SEU occurs in either
register r2 or r2 after they have been set but before they are compared, the program will deny a
correct PIN or might accept an incorrect PIN. The latter is significantly less likely to happen, but
if the SEU instead occurs in the zero control flag between lines 3 and 4, both outcomes are equally
probable. If an SEU can cause the program counter to change, it is also possible to skip entire
instructions. If the third line is skipped, the conditional branching in the next line is dependent
on whatever the flags have previously been set to, while skipping the fourth line would simply skip
the PIN check entirely. A single instruction can also be skipped, if it is subjected to an SEU that
changes its opcode, thereby transforming it into a different instruction entirely, which might not
have any impact on the flags or registers it should.

Because of the varying ways SEUs can impact a given program, it is important to clearly convey
which types of faults a potential solution can protect against and which it cannot. This information
is known as a fault model, and ideally all research into protection against SEUs should be very clear
about which fault model is targeted. However, as a cursory literature overview reveals, this is often
not the case.

While efforts have been made to define fault models in a rigorous manner such that solutions can
be formally proven (Perry et al., 2007; Hansen et al., 2016), most research is based on an often
somewhat vague, textual description of the fault model and proving its efficacy through benchmarks.
In this paper we attempt to compare a range of different approaches to fault tolerance systematically,
by constructing semantic rules that unambiguously model the fault model in a language of our
choosing, a redefinition of the TinyARM language from Hansen et al., 2016. While we concentrate
on software-only approaches, a few of them make guarantees about their solution based on hardware
support. In these cases, we attempt to describe their fault model through our TinyARM semantic
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2 The TinyARM Language

rules such that their hardware changes are captured in the fault model. Additionally, we attempt
to provide a more rigorous proof of the method presented by Moro et al., 2014 by using semantic
rules to show how TinyARM instructions can be made fault tolerant, either by repeating them or
by rewriting them to a sequence of instructions, each of which can be repeated. We also show how
an instruction from the ARM-like Thumb-2 instruction set, adcs, is incorrectly categorised as an
instruction for which no such sequence exists.

To sum up, the paper is structured as follows: in Section 2 we introduce and formalise the TinyARM
language through a structural operational semantic. TinyARM is then used, in Section 3, as a lens
through which we view the fault models of previous research in order to compare them. In Section
4 we turn our focus to the method for fault tolerance described in Moro et al., 2014 and attempt to
prove it using a different approach, while Section 5 contains our example prosal for a fault tolerant
version of the adcs instruction. Finally, we conclude the paper in Section 6.

2 The TinyARM Language

As previously mentioned, much research into fault tolerance is built up around textual descriptions
of the fault model. Additionally, the specifics of the architecture on which the faults take place
are often described similarly or left unspecified. As part of our contribution is to compare the
fault models of various approaches, it is important that we have a common machine specification
to work from. Taking inspiration from Perry et al., 2007, it is clear that having a well-defined
semantic description of a language is important. Staying in the same mindset as Hansen et al.,
2016, we want our language to be as closely related to a real world machine as possible while still
remaining simple enough to reason about. Therefore, we do not include instructions that require
special hardware support that cannot be found on regular ARM machines. In reality, this means
using the same language as Hansen et al., 2016, TinyARM, with a few modifications. In this section
we define the syntax and structural operational semantics of TinyARM and use these to also give
a formal definition of various fault that can occur in TinyARM.

2.1 Syntax and Semantics

Firstly, we define the set of values as the set of integers that can be encoded as 32-bit wide binary
numbers:

Val = B32

where B = {0, 1} and Bn = [0..n−1]→ B, with 0 referring to the Least Significant Bit (LSB). Note
that going forward, sets of functions are marked in bold. Additionally, for a binary digit, b ∈ B, we
define b to negate the bit. That is:

b = 1− b

Given the 32-bit wide architecture of TinyARM, addresses of locations in the heap have the same
size as values. Therefore we simply describe them as:

Addr = Val

In keeping with Hansen et al., 2016 and the ARM architecture, we define 14 registers: 13 general
purpose and the Program Counter (PC):

GeneralRegister = {r0, r1, ..., r12}
ControlRegister = {rpc}
Register = GeneralRegister ∪ ControlRegister
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2 The TinyARM Language 2.1 Syntax and Semantics

As all registers hold values we define mappings from Register to Val:

GeneralRegisters = GeneralRegister→ Val

ControlRegisters = ControlRegister→ Val

Registers = Register→ Val

In addition to registers, the ARM architecture also makes use of four control flags, Negative, Zero,
Carry and Overflow. These can be set by certain instructions and their contents used to determine
if a specific condition holds. Each flag contains a single binary bit:

Flag = {fN , fZ , fC , fV }
Flags = Flag→ B

In TinyARM, as in the ARM architecture, conditional execution is accomplished by annotating
individual instructions with a condition code, while unconditional execution is performed using the
condition code AL. In contrast to regular ARM, we have chosen to include a condition code for
unconditionally skipping an instruction:

ConditionCode = {EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV}

The condition codes are used in combination with Flags in the function cond to determine whether
or not to execute an instruction to which the condition code is attached:

cond : ConditionCode× Flags→ {true, false}

cond(χ, F ) =



F (fZ) = 1 if χ = EQ

F (fZ) = 0 if χ = NE

F (fC) = 1 if χ = CS

F (fC) = 0 if χ = CC

F (fN ) = 1 if χ = MI

F (fN ) = 0 if χ = PL

F (fV ) = 1 if χ = VS

F (fV ) = 0 if χ = VC

F (fC) = 1 ∧ F (fZ) = 0 if χ = HI

F (fC) = 0 ∨ F (fZ) = 1 if χ = LS

F (fN ) = F (fV ) if χ = GE

F (fN ) 6= F (fV ) if χ = LT

F (fZ) = 0 ∧ F (fN ) = F (fV ) if χ = GT

F (fZ) = 1 ∨ F (fN ) 6= F (fV ) if χ = LE

true if χ = AL

false if χ = NV
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2 The TinyARM Language 2.1 Syntax and Semantics

Additionally, we define the ¬ operator for condition codes as the following:

¬χ =



NE if χ = EQ

EQ if χ = NE

CC if χ = CS

CS if χ = CC

PL if χ = MI

MI if χ = PL

VC if χ = VS

VS if χ = VC

LS if χ = HI

HI if χ = LS

LT if χ = GE

GE if χ = LT

LE if χ = GT

GT if χ = LE

NV if χ = AL

AL if χ = NV

Instructions for which the condition code evaluates to false are caught by the semantic rule [nop],
which simply increments the program counter.

We argue that the introduction of TinyARM by Hansen et al., 2016 has some inconsistencies in its
definition of the arithmetic operations and their effect on Flags. Specifically, the + operator is used
both for addition of binary values and regular integers, and it is unclear when two’s complement
representation of values is taken into account. For example it is stated that the overflow flag is set on
addition if v1, v2 > 0 ∧ (v1 + v2 ≥ 231). Intuitively, this is the idea that if the sum of two positive
numbers is negative, an overflow must have occurred. However, checking if the values are positive
with v1, v2 > 0 assumes they are mathematical values, whereas the sign of the resulting from the
addition is checked as (v1 + v2 ≥ 231), which assumes the result is in two’s complement. The same
problem is present in the other case where the overflow flag is set: v1, v2 < 0 ∧ (v1 + v2 ≥ 0). To
avoid these problems we define our own functions for addition and subtraction and make use of the
fact that our binary values allow us to extract individual bits.

First, we define the two arithmetic operators in TinyARM, addition and subtraction:

Operator = {ADD, SUB}

For addition we define the function addbin such that it models binary addition, by recursively adding
pairs of bits. It also requires the use of the helper function carrybin , which returns the carry bits
of the addition of its two inputs.

carrybin : Bn × Bn × {0, 1} → Bn+1

carrybin(v1, v2, cin)(n) =


cin if n = 0

1 if v1(n− 1) + v2(n− 1) + carrybin(v1, v2, cin)(n− 1) > 1

0 otherwise

addbin : Bn × Bn × {0, 1} → Bn
addbin(v1, v2, cin)(n) = v1(n) + v2(n) + carrybin(v1, v2, cin)(n) mod 2
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2 The TinyARM Language 2.1 Syntax and Semantics

Subtraction is implemented with the function subbin , which exploits the fact that subtracting two
numbers is equivalent to negating the second number before adding it to the first. If signed integers
are represented using two’s complement, negating a number can simply be accomplished by inverting
each bit (using the function invbin) and adding one to the result. Both addbin and carrybin take a
third argument, which allows this addition of one.

invbin : Bn → Bn
invbin(v)(n) = v(n)

subbin : Bn × Bn → Bn
subbin(v1, v2)(n) = addbin(v1, invbin(v2), 1)

With these functions defined, it is now possible to give a proper definition of the flagsADD function:

flagsADD : Val×Val→ Flags
flagsADD(v1, v2)(fN ) = addbin(v1, v2, 0)(31)

flagsADD(v1, v2)(fZ) =

{
1 if ∀n ∈ [0..31]

(
addbin(v1, v2, 0)(n) = 0

)
0 otherwise

flagsADD(v1, v2)(fC) = carrybin(v1, v2, 0)(32)

flagsADD(v1, v2)(fV ) =


1 if v1(31) = 0 ∧ v2(31) = 0 ∧ binadd(v1, v2, 0)(31) = 1

1 if v1(31) = 1 ∧ v2(31) = 1 ∧ binadd(v1, v2, 0)(31) = 0

0 otherwise

The negative flag, fN , is set whenever the 32nd bit of the result of adding the two bit strings
together is set. If a value is regarded as a two’s complement signed integer, the 32nd bit being set
means the value is negative. The zero flag, fZ , is set if all bits of the result are set to zero. For
the carry flag, fC , we make use of the fact that the carrybin function is defined for bit strings of
arbitrary length and simply set the flag to the value of the 33rd bit of the carry. If we regard the
inputs and the result as two’s complement signed integers, the overflow flag, fV , can be said to be
set in two cases: if we add two positive values and the result is negative or if we add two negative
values and the result is positive. This closely follows the definitions found in the ARM Reference
(ARM, 2005).

flagsSUB : Val×Val→ Flags
flagsSUB(v1, v2)(fN ) = subbin(v1, v2)(31)

flagsSUB(v1, v2)(fZ) =

{
1 if ∀j ∈ [0, 1, . . . , 31] addsub(v1, v2)(j) = 0

0 otherwise

flagsSUB(v1, v2)(fC) = carrybin(v1, invbin(v2), 1)(32)

flagsSUB(v1, v2)(fV ) =


1 if v1(31) = 0 ∧ v2(31) = 1 ∧ binsub(v1, v2)(31) = 1

1 if v1(31) = 1 ∧ v2(31) = 0 ∧ binsub(v1, v2)(31) = 0

0 otherwise

The logic behind setting the flags when subtracting is similar to addition with a few modifications.
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2 The TinyARM Language 2.1 Syntax and Semantics

For the carry flag, fC , it is worth noting that we again use the fact that subtraction is the same as
negating the second argument and performing addition.

In contrast to Hansen et al., 2016 we have no need for the TinyARM variation that includes
blue/green instructions. Because of this, we simply define the observable variation of the language
as one entity. We name the set of all instructions in TinyARM Instr and define a member of this
set with the following grammar:

instr ::= MOVχ x, v store value v in x
| MOVχ x, y store value in y in x
| ADDχ x, y, z add value in y to value in z and store result in x
| ADDSχ x, y, z same as ADD, but also set flags
| SUBχ x, y, z subtract value in z from value in y and store result in x
| SUBSχ x, y, z same as SUB, but also set flags
| CMPχ x, y compare value in x with value in x and set flags
| LDRχ x, a store in x the value at heap address a
| LDRχ x, y store in x the value at heap address in y
| STRχ x, a store value in x at heap address a
| STRχ x, y store value in x at heap address in y
| Bχ a store in rPC the address a
| Bχ y store in rPC the address in x
| NOPχ increment program counter

where χ ∈ ConditionCode, x, y, z ∈ GeneralRegister, v ∈ Val and a ∈ Addr.
With this we can formalise a program as a mapping of addresses to instructions and heap memory
as a mapping of addresses to values:

Program = Addr→ Instr

Heap = Addr→ Val

Exactly as Hansen et al., 2016, we formalise the configurations used in the structural operational
semantics:

Conf = Program×Heap×Registers× Flags

Additionally, we adopt what we assume to be a common notational convenience when dealing with
the semantics of assembly languages. With R = Registers and for x ∈ Register and n ∈ Z we
define

Rx+z = R[x→ R(x) + n]

primarily, so we can write Rrpc+1 to increment the program counter by one.
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2 The TinyARM Language 2.1 Syntax and Semantics

With this we can define the semantics of the language:

[movval]
P (R(rpc)) = MOVχ x, v cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ v], F 〉

[movreg]
P (R(rpc)) = MOVχ x, y cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ R(y)], F 〉

[add]
P (R(rpc)) = ADDχ x, y, z cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ addbin(R(y), R(z), 0)], F 〉

[addset]
P (R(rpc)) = ADDSχ x, y, z cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ addbin(R(y), R(z), 0)],flagsADD(R(y), R(z))〉

[sub]
P (R(rpc)) = SUBχ x, y, z cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ subbin(R(y), R(z))], F 〉

[subset]
P (R(rpc)) = SUBSχ x, y, z cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ subbin(R(y), R(z))],flagsSUB(R(y), R(z))〉

[cmp]
P (R(rpc)) = CMPχ x, y cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1,flagsSUB(R(x), R(y))〉

[ldraddr]
P (R(rpc)) = LDRχ x, a cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ H(a)], F )〉

[ldrreg]
P (R(rpc)) = LDRχ x, y cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ H(R(y))], F )〉

[baddr]
P (R(rpc)) = Bχ a cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,R[rpc 7→ a], F )〉

[breg]
P (R(rpc)) = Bχ y cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,R[rpc 7→ R(x)], F )〉

[straddr]
P (R(rpc)) = STRχ x, a cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H[a 7→ R(x)], Rrpc+1, F )〉

[strreg]
P (R(rpc)) = STRχ x, y cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H[R(y) 7→ R(x)], Rrpc+1, F )〉

[nop]
P (R(rpc)) = NOPχ cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1, F )〉

[skip]
P (R(rpc)) = instrχ ¬cond(χ, F )
〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1, F )〉

where C =⇒ C ′ is the reduction relation between configurations, C,C ′ ∈ Conf.

We further define =⇒n as a sequence of n reductions. It is worth noting that the [cmp]-rule updates
the flags using flagsSUB. This is in accordance with the description of comparison found in the Arm
Reference Manual, as a comparison is simply performed as a subtraction that does not store the
result, but updates the control flags (ARM, 2005).
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2 The TinyARM Language 2.2 Fault Models

2.2 Fault Models

Having a rigorous definition of TinyARM gives us a solid foundation for modelling how a simple, but
realistic, ARM-like machine works. Being able to formally describe a machine operating correctly
also gives us the ability to describe what occurs when it does not operate correctly. We do so by
formulating specific semantic rules for the different types of faults that can occur. In these rules
we annotate the reduction relation with the type of fault that has occurred:

C =⇒φ C
′

where C,C ′ ∈ Conf, φ ∈ F and F is the fault model, i.e. the set of faults that can occur. Similar
to =⇒n, =⇒n

φ describes a sequence of n reductions where one fault, φ, has occurred at some point.

Additionally, we need a formal way of describing what happens to a bit string when an SEU occurs.
Once again, we follow the definitions of Hansen et al., 2016 and define what it means for two bit
strings, v1, v2 ∈ Bn to differ by exactly one bit, i.e. have a Hamming distance 1:

v1 ≡1 v2 iff ∃i ∀j (i, j ∈ [0..n− 1] ∧ v1(i) 6= v2(j)⇐⇒ i = j)

All fault models are prefixed with f - to differentiate them from the general semantic rules. As
discussed in the example in the introduction, faults can occur both in general registers and control
registers, such as the program counter. Therefore, we create two rules for SEUs in registers, one
for faults in any of the general registers and one for faults in a control registers:

[f -reggen]
x ∈ GeneralRegister v = R(x) v′ ≡1 v

〈P,H,R, F 〉 =⇒f -reggen
〈P,H,R[x 7→ v′], F 〉

[f -regctrl]
x ∈ ControlRegister v = R(x) v′ ≡1 v

〈P,H,R, F 〉 =⇒f -regctrl
〈P,H,R[x 7→ v′], F 〉

Again, as the example in the introduction shows, changing the single bits stored in individual flags
can have a significant impact on program behaviours. Therefore we introduce the following fault:

[f -flag]
f ∈ Flag b = F (f) b′ = b

〈P,H,R, F 〉 =⇒f -flag 〈P,H,R, F [f 7→ b′]〉

Real-world architectures often make use of an instruction register, i.e. a register that stores the
instruction about to be executed. If a fault occurs in this register, the program itself can be changed
in a non-permanent manner, i.e. one that does not change the program itself. While our TinyARM
machine does not explicitly contain an instruction register, we can model the same behaviour using
the existing definitions, save for one: We require the ability to talk about the binary encoding of
each instruction (their opcodes), such that we can talk about which instructions have a Hamming
distance of one between them. We simply define the function opcode : Instr → B32 to return the
binary encoding of an instruction. The rule can then be defined as:

[f -instr]

instr = P (R(rpc)) opcode(instr′) ≡1 opcode(instr)
P ′ = P [R(rpc) 7→ instr′]

〈P ′, H,R, F 〉 =⇒ 〈P ′, H ′, R′, F ′〉
〈P,H,R, F 〉 =⇒f -instr 〈P,H ′, R′, F ′〉

Generally, research often refers to memory as being protected from faults due to the simplicity of
incorporating Error Correcting Codes (ECC) in memory as compared to the complexity required
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3 Review

to protect individual parts of a CPU (Hansen et al., 2016; Reis et al., 2005; Perry et al., 2007; Moro
et al., 2014). However, new research shows that certain Rowhammer exploits can flip bits in ECC
protected memory (Jeong et al., 2019). Regardless of its real world usage, we define how SEUs in
memory would behave. Memory encompasses both the program itself and all the data stored in
the heap. Faults in these two locations have quite differing effects, so we model them as separate
faults:

[f -memprog]
a ∈ Addr instr = P (a) opcode(instr′) ≡1 opcode(instr)

〈P,H,R, F 〉 =⇒f -memprog
〈P [a 7→ instr′], H,R, F 〉

[f -memdata]
a ∈ Addr v = H(a) v′ ≡1 v

〈P,H,R, F 〉 =⇒f -memdata
〈P,H[a 7→ v′], R, F 〉

Finally, we define the fault that any one instruction is skipped. This could technically also occur
under any combination of [f -regctrl], [f -instr], [f -memprog] either by jumping one instruction ahead
or by changing any instruction into a NOP instruction. Depending on the opcodes of individual
instructions it might not be possible for an SEU to do this, however we would argue that there are
several ways in which an instruction can be skipped without specifically being converted into a NOP,
especially each instruction can be executed conditionally. Therefore, we simply define the fault as
follows:

[f -skip] 〈P,H,R, F 〉 =⇒f -skip 〈P,H,Rrpc+1, F 〉

Both [f -instr], [f -skip] and [f -memprog] are examples of faults that could lead to the situation
described in the example in the introduction, where the intended effects of a single instruction are
not achieved.

3 Review

In the following section we cover a number of techniques for providing fault tolerance that has been
the result of previous research. Table 1 contains a cursory overview of the examined techniques and
the types of faults they protect against. This is followed by a section for each paper, which discusses
the technique presented in greater detail. Note that the technique by Nicolescu and Velazco, 2003
differs from the rest in that it operates on C-code rather than some type of assembly language.

Paper Name (if any) Registers vulnerable Memory vulnerable Platform

Oh, Shirvani, and McCluskey, 2002a CFCSS PC No R4400 (MIPS)
Oh, Shirvani, and McCluskey, 2002b EDDI General, PC, Flag Yes R10000 (MIPS)
Reis et al., 2005 SWIFT General, PC, Flag No Itanium 2 (IA-64)
Perry et al., 2007 TALFT General No TALFT
Moro et al., 2014 PC Program code Thumb-2
Hansen et al., 2016 TinyARM General, PC No TinyARM

Nicolescu and Velazco, 2003 C2C General Yes DSP32C

Table 1: Techniques reviewed

For each paper we give a quick introduction to how the technique works in order to highlight the
main contribution of each paper. Additionally, we use the rigorously defined TinyARM language to
view the technique from the perspective of hardware that is closer to the real world. We do so, by
exemplifying how the faults allowed in each method equate to the different types of faults defined
in Section 2.2.
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It is important to note that the cardinality of the fault models alone cannot be used to compare the
effectiveness of each technique. This is mainly because a fault model does not actually capture any
information about the fault tolerance provided by a technique. Formally comparing fault models
might seem nonsensical when we assume the techniques are run in a imaginary machine, but we
would argue that it is an important steppingstone towards a more formal language for comparing
different software solutions for fault tolerance.

3.1 Control-Flow Checking by Software Signatures

The method presented by Oh, Shirvani, and McCluskey, 2002a, CFCSS, is focused on providing
detection of errors in control-flow. They accomplish this by separating programs into basic blocks
at compile-time and assigning each block a signature. The signature is calculated based on the
signature of the block before it in the control-flow graph. At run-time the signature is recalculated
and checked against the statically calculated one each time a control-flow transfer happens. This
makes it possible to detect if an illegal transfer of control ever takes place. The authors argue that
most ways of illegally transferring control are caught by this scheme, sometimes with a slight delay
before detection, such as when the checking instructions in a basic block are skipped. In this case,
the next legal control transfer will lead to a mismatch between signatures as a step of the calculation
has been skipped. Their technique does not capture an illegal transfer of control within a basic
block though, as this has no effect on the signature or its calculation. Additionally, it is possible
for parts of a basic block to be skipped if control is transferred to the beginning of the next basic
block and likewise conditional jumps that follow the wrong branch are not detected. Under the
assumption that programs have the objective of outputting some result of their calculations to a
memory mapped output device, performing the check upon entering each basic block is not strictly
necessary. Rather, the checks can be deferred to basic blocks which contain a store instruction. This
idea is presented here, but is not utilised. The fault model assumed is not explicitly stated in the
paper, but it is reasonable to expect that faults are allowed in the PC, as this is a prime candidate
for control-flow errors. As CFCSS makes use of a general purpose register to store the current
run-time signature, it is safe to assume that these registers are protected from faults. Likewise, the
control flags must be protected, as the comparison of compile-time and run-time signatures makes
use of them. Finally, no changes can be made to individual instructions in the program, as CFCSS
has no way of recognising that type of fault and it could hinder the correct detection of control-flow
faults. There is mention of control-flow errors being able to originate from faults in memory or the
instruction currently being executed, but it would have to SEUs specifically targeting the addresses
in branching instructions. The effect of this is already captured in our modelling of faults in the
program counter. Therefore, the fault model of CFCSS can simply be summed up as:

F = {[f -regctrl]}

3.2 Error Detection by Duplicated Instructions in Super-Scalar Proces-
sors

The method presented by Oh, Shirvani, and McCluskey, 2002b, relies on duplicating instructions in
a way that many other later techniques also take advantage of. Specifically, each original instruction
in a program, a Master Instruction (MI), is duplicated to produce a Shadow Instruction (SI). The
SI must use a different set of registers and heap addresses than its corresponding MI, thus the
set of registers and the set of memory addresses used by a program are each partitioned into
two disjoint subsets. Every calculation is then performed twice, once in each set of registers.
Multiple schemes for the arrangement of MIs and SIs are given, with a focus being on finding an
interleaving scheme that maximises the number of illegal control transfers that can be caught while
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also taking advantage of the fact that filling the instruction window on a super scalar processor with
independent instructions (which MIs and SIs are prime examples of) can lead to lower overhead
of using the technique. The authors argue that a control-flow errors can be caught anytime either
an MI or an SI is skipped, as this would leave the end results of the two chain of calculations in
different states. This seems to a bit of an oversimplification, as it relies on each instruction having
an effect on the values, which does not always have to be the case, rather it would depend on a
given program and its input. The results are compared every time they are to be stored in memory
or a branch is about to happen. If this comparison ever shows differing values a fault must have
occurred, the authors argue. When saving to memory, both the master and shadow version of the
value must be saved, albeit to different locations in the heap, such that they can be loaded into
different registers again at a later time, without ever having been mixed. The obvious implication
of the fact that data memory is being protected from faults by the technique is that it is part of
the fault model. Additionally, with the focus on calculating the probabilities of SEUs converting
instructions into other instructions, both program memory and the corruption of the instruction
register is part of the fault model. Despite no mention of it by Oh, Shirvani, and McCluskey,
2002b, we would argue that SEUs in general registers are also discovered by the method, as these
would inevitably be caught by the comparisons they make between the contents of MI registers and
SI registers. For faults in control flags, the comparisons would fail, leading to discovered faults.
Given their argument that control flow errors are also discovered as they would lead to a mismatch
between the number of MI and SI executed, SEUs in the program counter can also be allowed. The
fault model of EDDI then, is:

F = {[f -reggen], [f -regctrl], [f -flag], [f -instr], [f -memprog], [f -memdata]}

3.3 SWIFT: Software Implemented Fault Tolerance

The technique introduced by Reis et al., 2005 is presented as an evolution on previous work,
namely CFCSS and EDDI. Specifically, the method is described as EDDI, with half the memory
requirements merged with an improved version of CFCSS. The improvement to memory use comes
from acknowledging that memory is often well protected through ECC, thereby removing the need to
duplicate all data stored in memory. CFCSS is improved in two ways: Firstly, as originally described
by Oh, Shirvani, and McCluskey, 2002a, it is not necessary to check the run-time signature each
time a basic block is entered, only when entering blocks containing store instructions, as these
produce the only observable changes of programs. This cuts down on the number of comparison
instructions injected into programs, reducing the overhead of SWIFT. Secondly, CFCSS is only
able to detect illegal branches if they are not contained in the control-flow graph of the program
in question. This precludes the ability to detect faults that force control down the wrong branches
of conditional branches, as control is still transferred to a legal address. This is solved by what
the authors dub enhanced control-flow checking where the end of each block contains instructions
to assert which address control is about to be transferred to, while the beginning of each block
confirms that the assertion holds. While not explicitly mentioned by the authors, this also solves
a problem with CFCSS where the remaining instructions of a given basic block could be skipped
without being detected, if control was ever transferred to the beginning of the next legal basic block.
Given that this technique is essentially a combination of EDDI and CFCSS, it makes sense that the
fault model is similar to the union of those methods’ fault models, with the exclusion of memory
which is now assumed to be protected. The means that the fault model can be described as:

F = {[f -reggen], [f -regctrl], [f -flag], [f -instr]}
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3.4 Fault-tolerant Typed Assembly Language

Perry et al., 2007 presents a technique that conceptually does not differ much from EDDI, in that
it relies on calculating all values twice, using two disjoint sets of registers. The difference lies in
the fact that the authors of EDDI simply assume that fault tolerance is a quality that arises from
this duplication of calculations, whereas Perry et al., 2007 give a formal proof that this is the case
when the two chains of calculations never influence each other. In order to keep track of which
calculations belong to which chain, each calculation and register is annotated with at colour, green
or blue. In order to prove it, they introduce the structural operational semantics and type system for
an assembly language that is designed to run on imaginary ARM-like hardware designed by them.
The authors have aimed for a language that is closely related to real ARM assembly code. However,
their machine requires specialised hardware and the language includes additional instructions that
make use of these changes, such that they can prove the fault tolerance of the technique. There are
two main differences between TALFT and a real machine: firstly, the program counter is duplicated
and all instructions related to control-flow atomically compares the value in both program counters
before reading it or updating both of them. We would argue that the language can be made
significantly simpler without this change, and that we can simply model the same behaviour by not
including [f -regctrl] in the fault model. The second change is that store instructions must atomically
compare the green and blue versions of the value about to be stored and only store it if they are
equal. The atomicity of the instruction is vital, since a fault could otherwise change the value after a
successful comparison, but before it is stored. This is accomplished using specialised hardware and
extra instructions: the green store instruction places its operands (the value to be stored and the
address to store it at) in a queue and the next blue store instruction compares its operands to the
ones placed in the queue. If there is a mismatch between the values from the green and blue chain
of calculations, an error has occurred. Given the formal nature of the paper as a whole, it comes
as no surprise that the fault model is very well defined. Despite modelling an instruction register
through their semantics they do not allow SEUs to affect an instruction stored there. Couple this
with the fact that the entirety of memory is protected and it is clear that no faults can change the
program itself. Additionally, as control flags are not present in TALFT they are not included in the
fault model. Overall, this means that translating this technique to TinyARM will leave us with a
very simple fault model:

F = {[f -reggen], [f -regctrl]}

3.5 Formal Verification of a Software Countermeasure against Instruc-
tion Skip Attacks

The technique presented by Moro et al., 2014 relies on duplicating instructions, but not for the
purpose of separating calculations and detecting when they differ, as with previous techniques.
Instead the idea is that the redundancy introduced into the program by calculating the values
multiple times will simply mask any faults that skip a single instruction. The authors attempt
to group instructions in the ARM-like instruction set, Thumb-2, based on their behaviour when
duplicated: Instructions which are idempotent, i.e. subsequent execution have no effect beyond
the first execution, are simply considered fault tolerant if repeated. An example of an idempotent
instruction is MOV, which simply copies a value into another register. Performing this action once
or twice has the same effect and if either the first, second or none of the copies of this instruction
are skipped, the result is exactly the same. The other group of instructions are those that cannot
simply be repeated to become fault tolerant without changing the outcome of their execution. An
example could be if the ADD instruction shares a source and a destination register. In this case,
repeated executions will keep adding something to the same register. Many instructions such as
this can be rewritten using a series of idempotent instructions to accomplish the same thing, but in
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a manner where duplication of the individual instructions provides fault tolerance without changing
the outcome of the calculation. This group of instructions is called separable. For all but a few
exotic instructions, Moro et al., 2014 manage to find rules for rewriting, such that large parts of
programs can be hardened against faults which skip single instructions. For some of the instructions
it is indeed difficult to imagine a possible way to rewrite them without changing the outcome, such as
for instructions which are used for communicating with a co-processor or those whose semantics are
left up to the individual chip designer. However, one specific instruction, adcs, which is used to add
two values and the value stored in the carry flag, is said to be impossible to create a fault tolerant
version of. In Section 5 we show that it is indeed possible, both in Thumb-2 but also in TinyARM
with some small additions to the language. For all idempotent and separable instructions, model
checking is used to simulate all possible configurations in an imaginary 4-bit machine to show that
the technique does indeed provide fault tolerance and does not change the outcome. This proof is
rather lacking, as 4-bit machines are virtually non-existent, and in Section 4 we aim to formally
prove some of the authors’ assumption using the well-defined semantics of TinyARM. The fault
model can be described as:

F = {[f -regctrl], [f -instr], [f -memprog]}

3.6 Formal Modelling and Analysis of Bitflips in ARM Assembly Code

As with Perry et al., 2007, the main contribution of Hansen et al., 2016 is not in the technique
itself, which again involves duplicating all calculations and making sure that the two resulting chains
of calculation never influence each other. Using the language presented in the paper, TinyARM,
enables the possibility of statically verifying that a program is structured such that the calculations
are disjoint. TinyARM is closely related to TALFT, but better models a real world ARM-like
machine, by removing the need for special hardware support and a redundant program counter.
Instead of modelling a fault tolerant program counter in the language, two distinct fault types are
given, one for general registers and one which can influence the program counter. By removing
the last one from the fault model, there is no longer any need for a redundant program counter.
The need for special hardware, however, cannot be entirely removed without reducing the number
of faults that can be discovered. A number of rules for emulating the atomic compare-and-store
instructions, using sequences of regular instructions that does not require hardware support, is
presented. The efficacy of these rewriting rules is proven using model checking, with the exception
of an edge case that makes it possible for an erroneous value to be written to memory before it can
be detected that it is the result of a fault. The fault model used in most of the paper is as follows:

F = {[f -reggen], [f -flag]}

Statistical model checking is used to also give an estimate on the number of faults the same technique
can discover under a more aggressive fault model, such as when the program counter and instructions
are not longer protected. That is, a fault model of:

F = {[f -reggen], [f -regctrl], [f -flag], [f -instr]}

3.7 Detecting Soft Errors by a Purely Software Approach: Method,
Tools and Experimental Results

As previously mentioned, the technique presented by Nicolescu and Velazco, 2003 operates differ-
ently than the other techniques reviewed, even if it does build on some of the same fundamental
ideas. Instead of duplicating or transforming code at the assembly level, this technique works at
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Results

a higher level of abstraction, specifically by transpiling C-code. In doing so, a number of addi-
tional variables and conditionals are introduced into the source program to create a version that is
more tolerant to faults. The authors split the transformation rules into three distinct parts, each
protecting against a different type of fault. In order to protect against faults that change data,
all variables except final variables are duplicated along with any calculation done on them. Final
variables, are those that are not intermediary, i.e. used in the calculation of other variables. When
a final variable is written to, the two independent copies of the intermediary variables they are
calculated from, are compared. If they differ an error has occurred. The idea of final variables
closely resembles the notion of observable changes as described by Hansen et al., 2016 while the
idea of duplicating variables and the calculations they are used in, is very similar to the method
described by Oh, Shirvani, and McCluskey, 2002b and refined by Reis et al., 2005. The second
type of transformation rule aims to provide detection of faults that causes erroneous transfer of
control as a result of changes to the program counter, if a non-branching instruction is changed to
a branching one or if the address of an unconditional jump is changed. This is accomplished with
the use of a global boolean variable that is made incremented modulo 2 each time a basic block is
entered and each time one is exited, such that it always has value 0 when a block is active and 1
otherwise. The variable is xor’d with a signature that is unique for each basic block and the result
is stored. At the end of the basic block, the stored value and the signature of the basic block are
checked for equality. Only if the global status variable was 0 when the block was activated and
if the signature was the correct one for the recently exited basic block, will this check pass. The
idea of keeping track of which basic blocks are currently active and assigning them a signature
resembles the notion of signatures used in CFCSS. Finally, faults that can impact conditional and
unconditional branching are guarded against using the third transformation rules. For conditional
branching, this is simply achieved by performing an additional but identical comparison directly
following the original one. If the result of the second comparison differs from the first, an error must
have occurred. Unconditional branching takes place when procedures are called and when they re-
turn. Detecting errors in these, is simply done by writing a unique signature to a variable before
any unconditional transfer of control and checking if the expected value is stored in the variable
at the address that is branched to. As with the other techniques reviewed, Nicolescu and Velazco,
2003 also includes results from benchmarks in which SEUs are injected into programs to show the
efficacy of their contribution. Unlike other benchmarks we have reviewed, the authors have actually
performed several tests where they test their technique under different fault models. In the first
trial, it is simply stated that registers in the chip are targeted, and it is unclear if this only refers to
the general registers or if the program counter is also vulnerable. Given that the technique includes
some protection against faults in the program counter, we choose to include it. The second and
third trials introduced faults in the program memory and data memory respectively.

F1 = {[f -reggen], [f -regctrl]}

F2 = {[f -instr], [f -memprog]}

F3 = {[f -memdata]}

Additionally and uniquely for this paper, is the inclusion of a practical experiment that involves
subjecting the same chips to a source of radiation and observing the resulting faults in both hardened
and non-hardened programs. It is difficult to ascertain what the fault model was in this experiment,
but we assume that all types of faults we have described could occur in such an environment:

Frad = {[f -reggen], [f -regctrl]},
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3.8 Findings

Based on our review of a number of existing techniques for providing fault tolerance primarily
through software we conclude that simply comparing techniques based on their fault models is of
limited use. The review shows that most approaches can be categorised under two paradigms:
one which aims to detect whenever illegal transfer of control occurs by inserting extra control
instructions between basic blocks. The second attempts to avoids logical errors by performing
all calculations twice and making sure the two results are equivalent. Making more meaningful
comparisons than these is difficult, as there are variables other than their fault models on which the
techniques differ. It is possible to argue that the introduction of a formalised fault model simplifies
the problem of deciding if one technique is better than another because it catches more errors or
because fewer parts of a computer are considered vulnerable. However, the amount and type of
faults that can go undetected under each technique is no simpler to convey with the help of a
formalised fault model. This is especially true when comparing techniques that offer tolerance in
varying ways and are supposed to be used on different types of hardware.

While we found that fault models alone was not enough to compare two techniques, we argue that
presenting a well defined fault model along with a novel technique is useful, as it helps communicate
exactly what the method covers and what it does not. However, such a fault model builds on a
language with well defined semantics, and defining slightly different languages along with each new
technique is not particularly helpful either. Instead, we propose that a standardised language much
like TinyARM is developed. Small enough to not encumber research and close enough to real world
machines that low level details can be included and their effects studied. Such a language should
come with a set of commonly used fault models and the possibility of adding small extensions
if necessary. This could help reduce ambiguity when presenting novel techniques and encourage
formal verification of their efficacy, while also making it easier to compare new methods. For some
techniques, there would definitely be differences between the idealised formally defined language
and the real world system on which it will be used, but perhaps it would be worth it, for the increase
in interoperability between researchers.

It is interesting to see how all the reviewed papers include some type of benchmark in order to show
how well the technique works, but it is difficult, bordering on impossible, to use these for comparing
individual techniques. A large problem lies in not knowing the exact mechanics of how the faults
have been introduced in the programs. In some of the benchmarks we review, two considerations
have been made when simulating faults: all of the techniques reviewed make programs longer by
inserting additional instructions, which means that the programs have a larger memory footprint
and that they run for longer. Both increase the probability of an SEU occurring, which has been
modelled in some benchmarks by introducing a number of faults based on the both the runtime and
the size of the program. However, this does not capture the fact that in the real world SEUs tend
to show up more often in some parts of CPUs than others. Especially memory is often much more
susceptible to faults due to its large physical size compared to individual registers. This also means
that caches, which make up a relatively large part of many modern CPUs, are prime candidates for
faults when compared to the relatively small size of an ALU. Even then, the floating point units in
ALUs contain a large amount of combinational logic, which make them more susceptible than the
rest of the ALU (Swift et al., 2001). Through radiation testing of the PowerPC750, Swift et al.,
2001 also found that SEUs are more likely to flip bits from 1 to 0 than the other way. This should
make it clear that if one wants to properly simulate SEUs in a given machine and architecture, it
requires a deep understanding of not only how the chip is designed, but also the laws of physics
that basic gate design relies on. It might not be feasible to create a benchmark which accurately
depicts how faults occur in the real world, but researchers in the area could work towards creating
a framework that is more advanced than the methods we have seen in our review. It would also
be helpful to have use a standardised test methodology, such that new research could be compared
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more easily. It would be difficult to design such a methodology in a way that is platform and
architecture agnostic, which means that techniques that are developed with a specialised platform
in mind, might not be able to utilise it.

4 Formalisation of the Technique by Moro et al.

In this section we wish to clarify how we understand the argumentation for the classification if
instructions presented by Moro et al., 2014. We do so, in order to give define alternative classes,
which are grounded in our own formal definitions of the TinyARM language. This allows us to use
the rigorously defined semantics to give proofs that are stronger than the model checking used by
the original authors.

4.1 Classes of Instructions

As mentioned in Section 3.5, Moro et al., 2014 separates the Thumb-2 instruction set into three
classes. Our previous discussing only covered two of these, idempotent and separable instructions.
Idempotent instructions are those that achieve fault tolerance by simple duplication, while separable
instructions are the instructions for which a decomposition into a sequence of idempotent instruc-
tions is possible. Each of the individual idempotent instructions can then be duplicated to achieve
fault tolerance. The third class, the specific instructions, contains the remaining instructions from
Thumb-2. Some instructions in this class can be decomposed into a sequence of instructions, such
that fault tolerance can be achieved without altering the result. This is not the case for all instruc-
tions in the class: the authors acknowledge that some instructions in this class can only achieve
partial fault tolerance while others cannot be made fault tolerant at all. The following sections
highlights some problems with the classification performed my Moro et al., 2014.

4.1.1 Idempotent Instructions

The class that the whole technique arguably builds on is poorly defined. For example, fault tolerance
does not follow from the authors’ definition of idempotent instructions as simply as presented. They
define them as follows: “Idempotent instructions are the instructions that have the same effect when
executed once or several times.”(Moro et al., 2014) They then go on to say that fault tolerance
can be achieved by repeating any idempotent instruction. In the presence of a program counter
responsible for pointing at the next instruction to be executed, this argument partly breaks down
with the inclusion of instructions that can change the value of the program counter. An example of
this is a branching instruction, which one can argue does not change behaviour when executed twice:
it simply transfers control to a different address. Conceptually, duplicating a branch instruction
does indeed provide fault tolerance: the result is the same whether the first, second or none of the
instructions are skipped. However, the fault tolerance is not achieved because the instruction is
idempotent: only one of the instructions is ever executed, except if they both point to the address
of the second branch instruction, in which case control is stuck in an infinite loop. Grouping
instructions which achieve fault tolerance when duplicated is not inherently problematic, but the
reasoning for putting them there needs to clear.

4.1.2 Separable Instructions

According to Moro et al., 2014 this class contains any instruction which can be rewritten to a se-
quence of idempotent instructions. They argue that this encompasses several types of instructions,
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but again the definitions are too vague to be useful. Instructions which share a source and desti-
nation register belongs in this class they argue, but this includes MOV, an instruction that clearly
belongs in the first class. Additionally, it is argued that instructions which both read and write
flags belong in the specifics class, yet instructions that use a RRX shift (which reads from flags) and
write the flags are classified as separable, despite the obvious similarity to the instructions placed
in the specific class.

4.1.3 Specific Instructions

Moro et al., 2014 argue that the instructions in this class can actually be further classified into three
distinct classes. The fact that they group them together regardless, makes the class seem like an
afterthought compared to the previous two classifications. Included in the specific instructions are
the instructions that cannot “easily” be replaced by a list of idempotent instructions, instructions for
which fault tolerant replacement sequences do not exist and those for which a replacement sequence
exists under certain constraints. An example of an instruction for which an equivalent sequence
of idempotent instructions cannot easily be found, is the BL instruction, which writes the address
of the next instruction to the link register before jumping to a specified address. This instruction
is replaced by three idempotent instructions and an extra label. From this, we conclude that “not
easily replaced” refers to the addition of labels or recalculations of addresses in the replacement
sequence. The authors highlight ADCS as an instruction for which a strictly fault tolerant replacement
sequence cannot be found, but we would argue this is simply not true, as discussed in Section 5.
Finally, there are certainly some instructions for which a fault tolerant replacement sequence cannot
exist because the semantics of the instructions depend on factors in programs outside the currently
running one or because they have an effect on programs other than the currently running one.

4.2 Redefined Classes of Instructions

In this section we give our own definitions of classes that instructions can be put into, hoping to
remove any ambiguity and inconsistencies. Initially, we give an informal description of each class
with formal ones following in the next subsections. Before doing so, we need to redefine a few
terms that will allows us to be more precise when referring to instructions, as we have used this
term to refer to different concepts until now. Firstly, when we refer to instructions, we are talking
about fully instantiated instructions with no logical variables. For example, ADDAL r0, r1, r2 and
ADDAL r0, r0, r1 are both instructions. When we wish to refer to instructions where operands and
condition codes follows a specific pattern, we talk about instructions with a specific schema. In
keeping with the example, the two previous instructions have two distinct schemas: ADDχ x, y, z
and ADDχ x, x, y. Note that if the variables used in a schema are distinct then so are their values,
e.g. x 6= y in ADDχ x, y, z. Finally, we refer to instructions with a specific identifier when we talk
about all instructions with the same identifier regardless of operands, condition codes, and specific
semantic rules: thus, MOVAL r1, 1, MOVNE r0, r1 and MOVχ r0, r0 which are all instructions with the same
identifier: MOV. Additionally, we informally define what it means for some sequence of instructions to
be fault tolerant: if after execution, some sequence of instructions reaches the same state whether
a single arbitrary instruction in the sequence is skipped or not, the sequence is said to be fault
tolerant.

Idempotent instructions are instructions that if placed directly after one another in a program,
can be executed to reach the same configuration as executing only one of them, disregarding
the value of the program counter in the final configuration.

Fault tolerant instructions are instructions that can simply be duplicated in order to create a
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fault tolerant sequence of two instructions. All idempotent instructions are trivially members
of this class, as is the branching instruction.

Separable instructions are instructions for which there exists a sequence of fault tolerant in-
structions such that executing the fault tolerant instructions leads to the same configuration
as executing the separable instruction, disregarding that the sequence might use registers
other than the ones used by the separable instruction, to achieve its goal. All fault tolerant
instructions are trivially members of this class.

Non-separable instructions are instructions for which no sequence of fault tolerant instructions
with the same properties as those described above exists. As we are solely focusing on classify-
ing instruction from TinyARM, we expect this class to remain empty, but for real instruction
sets such instructions most likely exist. Examples could be instructions that signal something
to a co-processor, which can then act on the signal in a manner that is not described in the
semantics of the language. Another possibility is that the exact semantics of an instruction
is left up to the chip designer, which means we simply cannot make any guarantees about it.

In the following sections we present formal definitions of the three first classes.

4.3 Idempotent Instructions

In this section we formally define what it means for an instruction to be idempotent and prove that
some instructions are idempotent when they have a specific schema.

Definition 1 : An instruction, instr , is said to be idempotent if and only if:

∀〈P,H,R, F 〉 ∈ Conf (
(P (R(rpc)) = instr ∧ P (R(rpc) + 1) = instr) −→ (
∃〈P,H ′, R′, F ′〉, 〈P,H ′′, R′′, F ′′〉 ∈ Conf (
〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 ∧ 〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉 ∧
H ′ = H ′′ ∧ F ′ = F ′′ ∧ R′ =\rpc R

′′ ∧
R′(rpc) = R(rpc) + 1 ∧ R′′(rpc) = R′(rpc) + 1

)
)

)

We note that any instruction with a condition code which evaluates to false is idempotent, simply
because the entire instruction is skipped regardless of how many times it is executed:

Lemma 1 : Any instruction, instrχ, can be considered idempotent in contexts where cond(χ, F ) =
false:

∀〈P,H,R, F 〉 ∈ Conf (
(P (R(rpc)) = instrχ ∧ P (R(rpc) + 1) = instrχ ∧ cond(χ, F ) = false) −→ (
∃〈P,H ′, R′, F ′〉, 〈P,H ′′, R′′, F ′′〉 ∈ Conf (
〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 ∧ 〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉 ∧
H ′ = H ′′ ∧ F ′ = F ′′ ∧ R′ =\rpc R

′′ ∧
R′(rpc) = R(rpc) + 1 ∧ R′′(rpc) = R′(rpc) + 1

)
)

)

Proof :
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Prove: Lemma 1
Assume: 1. 〈P,H,R, F 〉 ∈ Conf

2. P (R(rpc)) = instrχ
3. P (R(rpc + 1)) = instrχ
4. cond(χ, F ) = false

〈1〉1. 〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 where R′ = Rrpc+1, H ′ = H and F ′ = F

Proof: by assumption 1, 2 and 4, [skip] and no other reduction is possible

〈1〉2. 〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉 where R′′ = R′
rpc+1, H ′′ = H ′ and F ′′ = F ′

Proof: by 〈1〉1, assumption 1, 3 and 4, reduction [skip] and no other reduction is possible

〈1〉3. R′′ =\rpc R
′

Proof: by 〈1〉2 and definition of =\rpc

〈1〉4. Q.E.D.

Proof: by 〈1〉1, 〈1〉2 and 〈1〉3

Having proved Lemma 1, we are now able to prove that any instruction with the schema MOVχ x, y
is idempotent.

Theorem 1 : Instructions with the schema MOVχ x, y are idempotent:

∀〈P,H,R, F 〉 ∈ Conf (
(P (R(rpc)) = MOVχ x, y ∧ P (R(rpc) + 1) = MOVχ x, y) −→ (
∃〈P,H ′, R′, F ′〉, 〈P,H ′′, R′′, F ′′〉 ∈ Conf (
〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 ∧ 〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉 ∧
H ′ = H ′′ ∧ F ′ = F ′′ ∧ R′ =\rpc R

′′ ∧
R′(rpc) = R(rpc) + 1 ∧ R′′(rpc) = R′(rpc) + 1

)
)

)

Proof :

Prove: H ′ = H ′′, F ′ = F ′′, R′ =\rpc R
′′ for all possible reductions

〈1〉1. Case: cond(χ, F ) = true

Assume: 1. P (R(rpc)) = MOVχ x, y
2. P (R(rpc) + 1) = MOVχ x, y

〈2〉1. 〈P,H,R, F 〉 =⇒ 〈P,H,R′, F 〉 where R′ = Rrpc+1[x 7→ R(y)]

Proof: by [movreg] and no other reduction is possible

〈2〉2. 〈P,H,R′, F 〉 =⇒ 〈P,H,R′′, F 〉 where R′′ = R′
rpc+1[x 7→ R′(y)]

Proof: by [movreg] and no other reduction is possible

〈2〉3. R′′ =\rpc R
′

〈3〉1. ∀r ∈ Register \ {rpc , x} R′′(r) = R′(r)
and R′′(x) = R′(y)

Proof: by definition of R′′ from 〈2〉2
〈3〉2. R′′(x) = R′(x)

〈4〉1. R′′(x) = R′(y)
= Rrpc+1[x 7→ R(y)](y)
= R(y)
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Proof: by definition of R′′ and R′ from 〈3〉1 and 〈2〉1
〈4〉2. R′(x) = Rrpc+1[x 7→ R(y)](x)

= R(y)

Proof: by definition of R′ from 〈2〉1
〈4〉3. Q.E.D.

Proof: by step 〈4〉1 and 〈4〉2
〈3〉3. Q.E.D.

Proof: by 〈3〉1 and 〈3〉2 and definition of =\rpc

〈2〉4. Q.E.D.

Proof: by 〈2〉1, 〈2〉2 and 〈2〉3
〈1〉2. Case: cond(χ, F ) = false

Proof: by case assumption and lemma 1

〈1〉3. Q.E.D.

Proof: by 〈1〉1 and 〈1〉2

We now show that instruction with the schema MOVχ x, x, i.e. instructions with the same source
and destination register, are idempotent.

Theorem 2 : Instructions with the schema MOVχ x, x are idempotent:

∀〈P,H,R, F 〉 ∈ Conf (
(P (R(rpc)) = MOVχ x, x ∧ P (R(rpc) + 1) = MOVχ x, x) −→ (
∃〈P,H ′, R′, F ′〉, 〈P,H ′′, R′′, F ′′〉 ∈ Conf (
〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 ∧ 〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉 ∧
H ′ = H ′′ ∧ F ′ = F ′′ ∧ R′ =\rpc R

′′ ∧
R′(rpc) = R(rpc) + 1 ∧ R′′(rpc) = R′(rpc) + 1

)
)

)

Proof :

Prove: H ′ = H ′′, F ′ = F ′′, R′ =\rpc R
′′ for all possible reductions

〈1〉1. Case: cond(χ, F ) = true and x = y

Assume: 1. P (R(rpc)) = MOVχ x, x
2. P (R(rpc) + 1) = MOVχ x, x

〈2〉1. 〈P,H,R, F 〉 =⇒ 〈P,H,R′, F 〉 where R′ = Rrpc+1[x 7→ R(x)]

Proof: by [movreg] and no other reduction is possible

〈2〉2. 〈P,H,R′, F 〉 =⇒ 〈P,H,R′′, F 〉 where R′′ = R′
rpc+1[x 7→ R′(x)]

Proof: by [movreg] and no other reduction is possible

〈2〉3. R′′ =\rpc R
′

〈3〉1. ∀r ∈ Register \ rpc R′′(r) = R′(r)

Proof: by definition of R′′ from 〈2〉2
〈3〉2. Q.E.D.

Proof: by 〈3〉1 and definition of =\rpc
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〈2〉4. Q.E.D.

Proof: by 〈2〉1, 〈2〉2 and 〈2〉3
〈1〉2. Case: cond(χ, F ) = false

Proof: by case assumption and lemma 1

〈1〉3. Q.E.D.

Proof: by 〈1〉1 and 〈1〉2

Additionally, we conjecture that several more instructions are idempotent as well. We group them
based on similarities between their semantics: Instructions with the following schemas behave very
similar to the two schemas in theorems 1 and 2 and are therefore idempotent:

MOVχ x, v
LDRχ x, a
LDRχ x, y
STRχ x, a
STRχ x, y
STRχ x, x

We would argue that instructions for addition and subtraction share an important characteristic
with the previous instructions: as long as the source and destination registers are distinct, the
semantics simply describe the writing some value that is not dependent on the program counter
into a specific register. Therefore instructions with the following schemas are idempotent:

ADDχ x, y, z
ADDχ x, y, y
SUBχ x, y, z
SUBχ x, y, y

The versions of these instructions that also set control flags based on the outcome, behave exactly
the same way as long as they are not conditionally executed. Instructions with the identifier CMP
have semantics similar to the those with the identifier SUBS. Therefore instructions with the following
schemas are also idempotent:

ADDSχ x, y, z, where χ = AL
ADDSχ x, y, y, where χ = AL
SUBSχ x, y, z, where χ = AL
SUBSχ x, y, y, where χ = AL
CMPχ x, y, where χ = AL
CMPχ x, x, where χ = AL

Finally, instructions with the schema NOPχ are also idempotent following the same reasoning used
in Lemma 1, as they have semantics identical to instructions that are not executed because their
condition is false.

4.4 Fault Tolerant Instructions

In this section we formally define what it means for an instruction to be fault tolerant and prove all
idempotent instructions are fault tolerant. As previously mentioned, if a fault tolerant instruction
is duplicated, the same configuration (disregarding the program counter) is reached whether the
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first, second or none of the instructions is skipped. We argue that branching instructions behave
similarly to idempotent instructions when it comes to fault tolerance, without following our defini-
tion of idempotence: if a branching instruction is executed twice, it leads to the same configuration
(disregarding the program counter) as executing it once, but since the first execution manipulates
the program counter, the second branching instruction is not executed. However, if the first in-
struction is skipped, then the second one is executed and the same final configuration is reached.
We therefore define fault tolerant instructions in a way that allows for instructions that change the
program counter.

Definition 2 : An instruction, instr , is said to be fault tolerant if and only if:

∀〈P,H,R, F 〉 ∈ Conf (
P (R(rpc)) = instr ∧ P (R(rpc) + 1) = instr −→ (
∃〈P,H ′, R′, F ′〉, 〈P,H ′′, R′′, F ′′〉,
〈P,H ′

1, R
′
1, F

′
1〉, 〈P,H ′′

1 , R
′′
, F

′′
1 〉,

〈P,H ′′
2 , R

′′
2 , F

′′
2 〉 ∈ Conf (

〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 ∧
〈P,H,R, F 〉 =⇒f -skip 〈P,H ′

1, R
′
1, F

′
1〉 ∧

〈P,H ′
1, R

′
1, F

′
1〉 =⇒ 〈P,H ′′

1 , R
′′
1 , F

′′
1 〉 ∧

(R′(rpc) = R(rpc) + 1 −→ (
〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉 ∧
〈P,H ′, R′, F ′〉 =⇒f -skip 〈P,H ′′

2 , R
′′
2 , F

′′
2 〉 ∧

H ′′ = H ′′
1 = H ′′

2 ∧
R′′ = R′′

1 = R′′
2 ∧

F ′′ = F ′′
1 = F ′′

2

)) ∧
(R′(rpc) 6= R(rpc) + 1 −→ (
H ′ = H ′′

1 ∧
R′ = R′′

1 ∧
F ′ = F ′′

1

))
)

)
)

Given this formal definition of what it means for an instruction to be fault tolerant, we show that
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all idempotent instructions are fault tolerant instructions:

Theorem 3 : All idempotent instructions are fault tolerant instructions, i.e.

∀〈P,H,R, F 〉 ∈ Conf (
(P (R(rpc)) = instr ∧ P (R(rpc) + 1) = instr) −→ (
∃〈P,H ′, R′, F ′〉, 〈P,H ′′, R′′, F ′′〉 ∈ Conf (
〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 ∧ 〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉 ∧
H ′ = H ′′ ∧ F ′ = F ′′ ∧ R′ =\rpc R

′′ ∧
R′(rpc) = R(rpc) + 1 ∧ R′′(rpc) = R′(rpc) + 1

)
)

)
−→
∀〈P,H,R, F 〉 ∈ Conf (
P (R(rpc)) = instr ∧ P (R(rpc) + 1) = instr −→ (
∃〈P,H ′, R′, F ′〉, 〈P,H ′′, R′′, F ′′〉,
〈P,H ′

1, R
′
1, F

′
1〉, 〈P,H ′′

1 , R
′′
, F

′′
1 〉,

〈P,H ′′
2 , R

′′
2 , F

′′
2 〉 ∈ Conf (

〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 ∧
〈P,H,R, F 〉 =⇒f -skip 〈P,H ′

1, R
′
1, F

′
1〉 ∧

〈P,H ′
1, R

′
1, F

′
1〉 =⇒ 〈P,H ′′

1 , R
′′
1 , F

′′
1 〉 ∧

(R′(rpc) = R(rpc) + 1 −→ (
〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉 ∧
〈P,H ′, R′, F ′〉 =⇒f -skip 〈P,H ′′

2 , R
′′
2 , F

′′
2 〉 ∧

H ′′ = H ′′
1 = H ′′

2 ∧
R′′ = R′′

1 = R′′
2 ∧

F ′′ = F ′′
1 = F ′′

2

)) ∧
(R′(rpc) 6= R(rpc) + 1 −→ (
H ′ = H ′′

1 ∧
R′ = R′′

1 ∧
F ′ = F ′′

1

))
)

)
)

Proof :

Prove: Theorem 3 i.e. that instr is fault tolerant if instr is idempotent
Assume: 1. P (R(rpc)) = instr ∧ P (R(rpc) + 1) = instr

2. 〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉 ∧ 〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉
3. H ′ = H ′′ ∧ F ′ = F ′′ ∧ R′ =\rpc R

′′ ∧ R′(rpc) = R(rpc)+1 ∧ R′′(rpc) = R′(rpc)+1

〈1〉1. 〈P,H,R, F 〉 =⇒ 〈P,H ′, R′, F ′〉
Proof: by assumption 2

〈1〉2. 〈P,H,R, F 〉 =⇒f -skip 〈P,H ′
1, R

′
1, F

′
1〉 ∧ H ′

1 = H ∧ F ′
1 = F ∧ R′

1 =\rpc R ∧ R′
1(rpc) =

R(rpc) + 1

Proof: by [f -skip]

〈1〉3. 〈P,H ′
1, R

′
1, F

′
1〉 =⇒ 〈P,H ′′

1 , R
′′
1 , F

′′
1 〉 ∧ H ′′

1 = H ′ ∧ F ′′
1 = F ′ ∧ R′′

1 =\rpc R
′ ∧ R′′

1 (rpc) =
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R′(rpc) + 1

Proof: by assumption 1 and 3

〈1〉4. (R′(rpc) = R(rpc) + 1)

Proof: by assumption 3

〈1〉5. (R′(rpc) = R(rpc) + 1) −→ 〈P,H ′, R′, F ′〉 =⇒ 〈P,H ′′, R′′, F ′′〉
Proof: by step 〈1〉4 and assumption 2

〈1〉6. (R′(rpc) = R(rpc) + 1) −→ (〈P,H ′, R′, F ′〉 =⇒f -skip 〈P,H ′′
2 , R

′′
2 , F

′′
2 〉 ∧ H ′′

2 = H ′ ∧ F ′′
2 =

F ′ ∧ R′′
2 =\rpc R

′ ∧ R′′
2 (rpc) = R′(rpc) + 1)

Proof: by step 〈1〉4 and [f -skip]

〈1〉7. (R′(rpc) = R(rpc) + 1) −→ (H ′′ = H ′′
1 = H ′′

2 ∧ R′′ = R′′
1 = R′′

2 ∧ F ′′ = F ′′
1 = F ′′

2 )

〈2〉1. (R′(rpc) = R(rpc) + 1)

Proof: by step 〈1〉4
〈2〉2. H ′′ = H ′′

1 ∧ R′′ = R′′
1 ∧ F ′′ = F ′′

1

〈3〉1. H ′′ = H ′ ∧ F ′′ = F ′ ∧ R′′ =\rpc R
′ ∧ R′′(rpc) = R′(rpc) + 1

Proof: by assumption 3

〈3〉2. H ′ = H ′′
1 ∧ F ′ = F ′′

1 ∧ R′ =\rpc R
′′
1 ∧ R′(rpc) + 1 = R′′

1 (rpc)

Proof: by 〈1〉3
〈3〉3. Q.E.D.

Proof: by 〈3〉1 and 〈3〉2
〈2〉3. H ′′ = H ′′

2 ∧ R′′ = R′′
2 ∧ F ′′ = F ′′

2

〈3〉1. H ′′ = H ′ ∧ F ′′ = F ′ ∧ R′′ =\rpc R
′ ∧ R′′(rpc) = R′(rpc) + 1

Proof: by assumption 3

〈3〉2. H ′ = H ′′
2 ∧ F ′ = F ′′

2 ∧ R′ =\rpc R
′′
2 ∧ R′(rpc) + 1 = R′′

2 (rpc)

Proof: by 〈1〉6
〈3〉3. Q.E.D.

Proof: by 〈3〉1 and 〈3〉2
〈2〉4. Q.E.D.

Proof: by 〈2〉1, 〈2〉2 and 〈2〉3
〈1〉8. (R′(rpc) 6= R(rpc) + 1) −→ (H ′ = H ′′

1 ∧ R′ = R′′
1 ∧ F ′ = F ′′

1 )

Proof: (R′(rpc) 6= R(rpc) + 1) is false by step 〈1〉4
〈1〉9. Q.E.D.

Proof: by 〈1〉1, 〈1〉4, 〈1〉5, 〈1〉2, 〈1〉3, 〈1〉6, 〈1〉7 and 〈1〉8

We believe that all instructions with the identifier B are also fault tolerant instructions, due to their
similarity to idempotent instructions:

Conjecture 1 : Instructions with the schemas Bχ a and Bχ y are fault tolerant.

Furthermore, we argue that it follows from Definition 2 that duplicating a fault tolerant instruction
in any given program, creates a fault tolerant sequence of instructions, i.e a sequence of instructions
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that when executed reaches the same final configuration whether a single arbitrary instruction in
the sequence is skipped or not:

Conjecture 2 : Duplicating a fault tolerant instruction creates a fault tolerant sequence of the
two instructions.

4.5 Separable Instructions

In this section we use our previous findings to formally define what it means for an instruction to be
separable. The reasoning behind separable instructions is that they can be rewritten as a sequence
of one or more fault tolerant instructions that reach the same final configuration as the separable
instruction when executed (disregarding the fact that the rewritten sequence might use otherwise
dead registers). Each of these fault tolerant signatures can then be duplicated to achieve a fault
tolerant sequence.

Definition 3 : An instruction, instr , is said to be separable into a sequence of fault tolerant
instructions:

S =


instr0

instr1

. . .
instrn


if and only if:

∀〈P,H,R, F 〉 ∈ Conf ∀Ps ∈ Program (
P (R(rpc)) = instr ∧ ∀i ∈ [1..n] (P (R(rpc) + i) = NOPAL ∧
∀i ∈ [0..n] (Ps(R(rpc) + i) = instr i ∧ FaultTolerant(instr i)) ∧
∀i /∈ [0..n] (Ps(R(rpc) + i) = P (R(rpc) + i)) −→ (
〈P,H,R, F 〉 =⇒n 〈P,H ′, R′, F ′〉 −→ (
〈Ps, H,R, F 〉 =⇒n 〈Ps, H ′′, R′′, F ′′〉 ∧
H ′′ = H ′ ∧ F ′′ = F ′ ∧ ∀r ∈ RegistersUsed(instr) R′′(r) = R′(r)

)
)

)

where FaultTolerant(instr) is a logical proposition which is true if and only if the instruction instr is
in the set of fault tolerant instructions and RegistersUsed is a function, which for a given instruction
returns the members of GeneralRegister that the instruction makes use of, along with rpc .

Conjecture 3 : Instructions with the schema ADDχ x, x, y are separable into sequences of fault
tolerant instructions:

S =

[
ADDχ z, x, y
MOVχ x, z

]

We conjecture that all other instructions with the identifier ADD that share a source and destination
register behave similarly, and that the same is true for SUB. Therefore instructions with the following
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schemas are separable:

ADDχ x, y, x
ADDχ x, x, x
SUBχ x, x, y
SUBχ x, y, x
SUBχ x, x, x
LDRχ x, x

Conjecture 4 : Instructions with the schema ADDSχ x, y, z, where χ 6= AL are separable into se-
quences of fault tolerant instructions:

S =

[
B¬χ a
ADDSAL x, y, z

]
where a is the address immediately following the last instruction.

We further conjecture that all other instructions that read flags (through their condition codes)
and write flags are separable in a similar fashion:

ADDSχ x, y, y Where χ 6= AL
SUBSχ x, y, z Where χ 6= AL
SUBSχ x, y, y Where χ 6= AL
CMPχ x, y Where χ 6= AL
CMPχ x, x Where χ 6= AL

Finally, instructions which have both of these properties are also separable.

Conjecture 5 : Instructions with the schema ADDSχ x, x, y are separable into sequences of fault
tolerant instructions:

S =

 B¬χ a
ADDSAL z, x, y
MOVAL x, z

 where a is the address immediately following the last instruction.

We argue that the same is true for instructions with the following schemas:

ADDSχ x, x, y
ADDSχ x, y, x
ADDSχ x, x, x
SUBSχ x, x, y
SUBSχ x, y, x
SUBSχ x, x, x

Our formalisation of the technique presented by Moro et al., 2014 is not complete: we have only
proven that some instructions are idempotent and that all idempotent instructions are fault tolerant.
Nevertheless, we have done the ground work for proving fault tolerance or separability of the
remaining instructions in TinyARM and for proving that an entire program can be made fault
tolerant using the technique. This shows that using a formally defined language it is possible
to construct stronger arguments than those achieved by model checking. Especially, since the
model checking quickly becomes infeasible when attempting to model machines with realistic sized
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registers. In stark contrast to this, the proofs we have outlined are trivially expandable to any bit
width.

Additionally, through the work of redefining the classes of instructions, we were forced to question
the authors’ original classification, which meant that we questioned their conclusion that the ARM
instruction ADCS could not be separated in a way that always gave the same result if a single
instruction was skipped. In the next section we describe how this can be achieved.

5 Separability of ADCS

In this section we show that it is indeed possible to rewrite the ADCS instruction to be fault tolerant
in the same manner as Moro et al., 2014 does for other instructions, i.e. simply by achieving the
same effect using instructions which can be duplicated to achieve fault tolerance. We show this
using both the Thumb-2 instruction set as per the original paper, but also show that it can be
done using TinyARM and therefore take advantage of the definitions and proofs shown in previous
sections.

The ADCS instruction is used to add three values: the values in the two operand registers and the 1
or 0 stored in the carry flag. The idea behind our rewriting rule is that ADCS r0, r1, r2 is simply
equivalent to ADDS r0, r1, r2 if the carry flag is not set. If the carry flag is set however, the two
instructions ADDS r3, r1, r2 and ADDS r0, r3, 1 performs the same addition, but the carry and
overflow flags will then be set by the final addition. In the original instruction these two flags would
be set to what corresponds to a combination of the two additions. This can simply by achieved by
saving the resulting flags in registers and writing the logical disjunction of the two into the flags.
Deciding on either of the two possibilities is simply achieved by branching based on the carry flag.
As all the instructions used for this have fault tolerant signatures, each one can simply be repeated
to achieve fault tolerance. This is shown in Thumb-2 assembly code in Listing 1

1 BCS carrySet ; branch if carry flag is set
2 BCS carrySet
3 ADDS r1 r2 r3 ; no carry , adcs is equivalent to adds
4 ADDS r1 r2 r3
5 B end ; skip to the end
6 B end
7 carrySet:
8 ADDS r4 r2 r3 ; addition of the two values
9 ADDS r4 r2 r3

10 MRS r5 apsr ; save flags resulting from first addition
11 MRS r5 apsr
12 ADDS r1 r4 1 ; addition of the 1 in carry
13 ADDS r1 r4 1
14 MRS r6 apsr ; save flags resulting from second addition
15 MRS r6 apsr
16 AND r7 r5 0x30000000 ; mask other flags from first addition
17 AND r7 r5 0x30000000
18 OR r8 r6 r7 ; combine flags from first and second addition
19 OR r8 r6 r7
20 MSR apsr r8 ; set flags to combined flags
21 MSR apsr r8
22 end:

Listing 1: The ADCS r1, r2, r3 instruction, rewritten as a sequence of idempotent instructions in
Thumb-2
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5 Separability of ADCS

It can certainly be argued that the rewritten version of ADCS requires a significant number of extra
instructions and registers. In fact, the trivial version of the rewriting requires an additional five
registers, but it is possible to reduce this number to two, if both the AND and OR instructions are
idempotent when they share a source and destination register, which we would argue they are.

We also show how the same operation can be created (in a fault tolerant way) in TinyARM. This
allows us to actually make use of our findings from Section 4. We do need to extend our definition
of TinyARM slightly though: it is possible to conditionally load a 1 or 0 into a given register, which
means we can copy the value of a flag into a register, but writing a specific value to only a single
flag is a bit more complicated. Therefore we introduce the instruction MRF for doing setting a given
flag to the LSB of the value stored in a register. For good measure we also include the instruction
MFR for copying the value of a flag into a register:

instrADCS ::= . . . (instructions from Instr)
| MFRχ x, f store value in f in x
| MRFχ x, f store LSB of value in x in f

where χ ∈ ConditionCode, x ∈ GeneralRegister and f ∈ Flag.
Additionally, the semantics of the ADCS extension of TinyARM are defined as follows:

[mfr]
P (R(rpc)) = MFRχ x, f cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ F (f)], F 〉

[mrf]
P (R(rpc)) = MRFχ x, f cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1, F [f 7→ R(x)(0)]〉

where C =⇒ C ′ is the reduction relation between configurations, C,C ′ ∈ Conf.

The operation we use the AND and OR instructions for in the Thumb-2 example can also be ac-
complished using conditional execution, but we deemed that introducing an additional level of
conditional execution using branching would muddle the details. For TinyARM, we avoid defining
new instructions for logical conjunction and disjunction, and instead make use of the fact that
condition codes allow us to perform conditional execution without branching:

1 B_CS carrySet ; branch if carry flag is set
2 B_CS carrySet
3 ADDS r1 r2 r3 ; no carry , adcs is equivalent to adds
4 ADDS r1 r2 r3
5 B end ; skip to the end
6 B end
7 carrySet:
8 ADDS r4 r2 r3 ; addition of the two values
9 ADDS r4 r2 r3

10 MFR r5 Fc ; save carry flag resulting from first ADDS
11 MFR r5 Fc
12 MFR r6 Fv ; save overflow flag resulting from first ADDS
13 MFR r6 Fv
14 ADDS r1 r4 1 ; addition of the 1 in carry
15 ADDS r1 r4 1
16 MRF_CC r5 Fc ; set carry flag to result of first ADDS , if not set
17 MRF_CC r5 Fc
18 MRF_VC r6 Fv ; set overflow flag to result of first ADDS , if not set
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6 Conclusion

19 MRF_VC r6 Fv
20 end:

Listing 2: The ADCS r1, r2, r3 instruction, rewritten as a sequence of idempotent instructions in
TinyARM

6 Conclusion

In this paper we have redefined the language TinyARM which attempts to formalise a simple ARM-
like machine. The language was originally defined by Hansen et al., 2016, but we have extended
some parts of it and removed a few ambiguities. We have used the language as a foundation for
formalising different types of faults and how they affect a system. These fault models are used in our
review of a handful of different techniques for providing tolerance against SEUs. The fault models
are used to compare the techniques, but we find that it is difficult to compare them simply based
on the fault models defined by us, both because the techniques are designed for systems different
than TinyARM and because techniques differ in more ways than simply which SEUs they protect
against. We come to the conclusion that if authors of novel techniques used a common framework
for specifying their systems, fault models and perhaps even benchmarks, and proof techniques it
would be considerably easier to compare techniques and prove their efficacy. The development of
such a framework is left open for future work, but we attempt to show that it is indeed possible to
use a well defined language such as TinyARM to prove the correctness of a technique for which it
was not designed. We do so by using structured formal proofs to show that some instructions do
indeed posses properties that are asserted by Moro et al., 2014. There are still central conjectures
that need proofs and definitions that can be formalised further, especially concerning the fault
tolerance of separable instructions. We leave this for future work. Finally, we argue that the ADCS
instruction from the Thumb-2 instruction set is wrongfully categorised by Moro et al., 2014.

29



References References

References

Moro, N. et al. (Sept. 2014). “Formal verification of a software countermeasure against instruction
skip attacks”. In: Journal of Cryptographic Engineering 4.3, pp. 145–156. issn: 2190-8516. doi:
10.1007/s13389-014-0077-7. url: https://doi.org/10.1007/s13389-014-0077-7.

Tront, J. G., J. R. Armstrong, and J. V. Oak (Dec. 1985). “Software Techniques for Detecting
Single-Event Upsets in Satellite Computers”. In: IEEE Transactions on Nuclear Science 32.6,
pp. 4225–4228. issn: 1558-1578. doi: 10.1109/TNS.1985.4334099.

Shivakumar, P. et al. (June 2002). “Modeling the effect of technology trends on the soft error rate
of combinational logic”. In: Proceedings International Conference on Dependable Systems and
Networks, pp. 389–398. doi: 10.1109/DSN.2002.1028924.

Borkar, S. (Nov. 2005). “Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation”. In: IEEE Micro 25.6, pp. 10–16. issn: 1937-4143. doi:
10.1109/MM.2005.110.

Perry, Frances et al. (June 2007). “Fault-tolerant Typed Assembly Language”. In: SIGPLAN Not.
42.6, pp. 42–53. issn: 0362-1340. doi: 10.1145/1273442.1250741.

Hansen, René Rydhof et al. (Oct. 2016). “Formal modelling and analysis of Bitflips in ARM assembly
code”. In: Information Systems Frontiers 18.5, pp. 909–925.

ARM (2005). ARMv5 Architecture Reference Manual. 110 Fulbourn Road Cambridge, England CB1
9NJ: ARM limited.

Reis, G. A. et al. (Mar. 2005). “SWIFT: software implemented fault tolerance”. In: International
Symposium on Code Generation and Optimization, pp. 243–254. doi: 10.1109/CGO.2005.34.

Jeong, D. R. et al. (May 2019). “Razzer: Finding Kernel Race Bugs through Fuzzing”. In: 2019
2019 IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society. doi: 10.1109/SP.2019.00017. url: https://doi.ieeecomputersociety.org/10.1109/
SP.2019.00017.

Nicolescu, B. and R. Velazco (Mar. 2003). “Detecting soft errors by a purely software approach:
method, tools and experimental results”. In: 2003 Design, Automation and Test in Europe Con-
ference and Exhibition, 57–62 suppl. doi: 10.1109/DATE.2003.1253806.

Oh, Nahmsuk, Philip P. Shirvani, and Edward J. McCluskey (Mar. 2002a). “Control-flow checking
by software signatures”. In: IEEE Transactions on Reliability 51.1, pp. 111–122. doi: 10.1109/
24.994926.

— (Mar. 2002b). “Error detection by duplicated instructions in super-scalar processors”. In: IEEE
Transactions on Reliability 51.1, pp. 63–75. doi: 10.1109/24.994913.

Swift, G.M et al. (Dec. 2001). “Single-event upset in the PowerPC750 microprocessor”. In: IEEE
Transactions on Nuclear Science 48.6, pp. 1822, 1827. issn: 0018-9499.

30

https://doi.org/10.1007/s13389-014-0077-7
https://doi.org/10.1007/s13389-014-0077-7
https://doi.org/10.1109/TNS.1985.4334099
https://doi.org/10.1109/DSN.2002.1028924
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1145/1273442.1250741
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1109/SP.2019.00017
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00017
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00017
https://doi.org/10.1109/DATE.2003.1253806
https://doi.org/10.1109/24.994926
https://doi.org/10.1109/24.994926
https://doi.org/10.1109/24.994913

	Introduction
	The TinyARM Language
	Syntax and Semantics
	Fault Models

	Review
	Control-Flow Checking by Software Signatures
	Error Detection by Duplicated Instructions in Super-Scalar Processors
	SWIFT: Software Implemented Fault Tolerance
	Fault-tolerant Typed Assembly Language
	Formal Verification of a Software Countermeasure against Instruction Skip Attacks
	Formal Modelling and Analysis of Bitflips in ARM Assembly Code
	Detecting Soft Errors by a Purely Software Approach: Method, Tools and Experimental Results
	Findings

	Formalisation of the Technique by Moro et al.
	Classes of Instructions
	Idempotent Instructions
	Separable Instructions
	Specific Instructions

	Redefined Classes of Instructions
	Idempotent Instructions
	Fault Tolerant Instructions
	Separable Instructions

	Separability of ADCS
	Conclusion
	Bibliography

